幽灵蝶 幽灵蝶
我是一只幽灵蝶,从遥远的传说中来,向着自由的方向永远的飞……
关注数: 210 粉丝数: 222 发帖数: 2,517 关注贴吧数: 0
(连载之十九)宇宙模型之大爆炸标准模型 标准模型是建立在宇宙学原理和爱因斯坦场方程基础上的宇宙模型,也就是大爆炸模型.这是40年代由伽莫夫,阿尔芬和赫尔曼提出的.他们认为宇宙是在100多一年前由一个超高温超高密度的原始火球(宇宙蛋)发生大爆炸而产生的.宇宙学原理是指宇宙中所有的空间位置都是等价的,也就是说观察者站在宇宙中的任何位置观察宇宙,他看到的大尺度特征都是一样的,宇宙在空间上是均匀的,各向同性的. 通过求解场方程可得到三个解,宇宙的未来由现在的宇宙平均物质密度决定.若小于或等于临界密度,宇宙会一直膨胀下去.若大于临界密度,宇宙膨胀到一定阶段会转向收缩,最终会回到一个奇点.目前测得的宇宙密度小于临界密度,似乎宇宙应该永远膨胀下去,宇宙是无限无边的.但宇宙学家们大都认为宇宙应该是脉动的,即先膨胀后收缩.因为测定宇宙未来还有一种测定减速因子的方法,即测定宇宙膨胀率的变化率.这种方法更为可靠一些,通过减速因子的测量,证明宇宙是脉动的.因此宇宙学家们认为宇宙中还有大量没有被发现的暗星云,暗星系等暗物质,也有人猜测中微子有静止质量来补充失落的物质. 大爆炸初期的万分之一秒,光子能量非常大,甚至超过强子的静止能,因此可以通过强相互作用产生各种强子.温度降到一万亿度时粒子处于热平衡状态,进行着激烈的强子反应.大爆炸后百分之几秒,温度降到一千亿度时,光子能量低于重子静止能,重子反应停止,正反重子也迅速湮灭,反物质消失,重子中只剩一些质子和中子.由于它们静能之差不大,可以通过和轻子的反应相互转化,质子和中子数几乎相等,由于中子质量略大于质子质量,随着温度降低,中子向质子的转化占优势,结果中子减少,质子增多.大约4秒钟后,温度降到50亿度以下,不足以产生正反电子对,正反电子开始湮灭,正电子消失.使质子和中子的转化停止,中子占14%,质子占86%.大约三分钟后,温度降到十亿度,热运动不足以破坏氘核,中子和质子迅速结合为氘核,又通过各种反应形成氦核.反应完成后氦约占28%左右,刚好和天文观测的氦丰度一致.大约50万年后,温度降到三千到四千度,质子和电子结合为氢原子,其他稳定原子也形成了.此时的光子能量很低,已不能引起原子电离,更不能引起核反应了.因此从这时起,宇宙对光子基本是透明的,光子和粒子的演化从此就互相分开了.这时的辐射约3000K,为黑体辐射谱.经过一百多亿年的膨胀和降温,这几千度的热光变成了冰冷的3K左右微波背景辐射.这正是美国的彭齐亚斯和威尔逊发现的2.7K微波背景辐射.由于大爆炸理论的前提是公认的宇宙学原理和广义相对论,而且该模型又和哈勃红移,氦丰度,背景辐射及射电源计数等主要天文观测结果相吻合,因此是目前公认的宇宙模型,称为标准模型.但还有许多问题没有解决,而且仍有三个原则性问题:(1)初始奇点(2)极早期宇宙情况(3)正反物质初始不对称的原因没有解决.所以标准模型还不能定论. 下期内容是宇宙模型之稳恒态宇宙学和等级宇宙模型.
(连载之十八)黑洞漫谈之真空效应 在霍金辐射一期中已经提到了真空的一些性质,这些内容不再重述.在霍金提出黑洞有热辐射之前,安鲁证明了安鲁效应:匀加速直线运动参考系中的观察者处在热浴中.也就是说,原本一无所有的空间,所有的惯性观察者都认为是真空,而在非惯性系中的观察者却发现自己所在的空间不是真空,自己周围充满了热辐射,其温度与加速度成正比.这证明真空与参考系的选择有关,真空也是相对的.而且温度也不是绝对的,它也依赖于参考系的选择.由于这一效应过于微弱,目前实验还无法观测到.安鲁还证明,真空态与热平衡态有共同的本质,选择不同的能量零点,二者之间可以相互转化. 霍金提出黑洞热效应后,安鲁意识到安鲁效应可能与霍金效应有相同的本质.后来证明,这两个效应都是弯曲时空的一种普遍性质,与时空弯曲的细节无关,在证明的过程中甚至用不到爱因斯坦的场方程.它们不是动力学效应,而是一种"边界"效应,取决于坐标系的选择.安鲁效应表明,热辐射起源于真空能级的变化.安鲁效应的温度正比于加速度,也就是正比于此加速系的惯性场强.所以惯性力可看成惯性的经典效应,力学效应,而安鲁效应可看成惯性的量子效应,热效应.类似的,霍金辐射也起源于真空能级的变化,霍金效应的温度正比于黑洞的表面引力,也就是正比于引力场强度.因此万有引力可看作引力场的经典效应,力学效应,而霍金效应可看作引力场的量子效应,热效应.因此惯性力与万有引力也起源于真空能级的变化,惯性力与万有引力有相同的本质和起源,这就是爱因斯坦著名的等效原理.惯性力既不像牛顿认为的那样起源于绝对空间,也不像马赫断言的那样起源于遥远星系,惯性效应实质上是一个起源于加速引起的真空"形变"的局域效应,惯性力就是真空"形变"所造成的反作用力.因此惯性作用也不是超距作用,它与普通力一样,也有反作用力.万有引力也不是直接相互作用,而是通过"形变"的真空相互作用.引力场就是"形变"的真空场.由此可见真空传递信息的速度为光速. 霍金辐射一节中曾提到过开斯米尔效应.它是指放在真空中相距很近的两块板,由于板间真空的量子涨落而存在一种吸引力(不是万有引力),这一引力是由真空发生变化引起的,理论计算两板间的引力与板间距的四次方成反比.此效应首先被荷兰莱顿实验室观测到,与理论计算相符.总之,无处不在又变化多端的真空存在很多效应,尤其是弯曲时空中真空的研究使人们大开眼界,黑洞理论与真空理论相结合,有希望解开物理学中的许多疑团. 下期内容是宇宙模型之大爆炸标准模型.
(连载之十七)黑洞漫谈之奇点困难 空间究竟有限还是无限?时间究竟有没有开始和结束?数千年来,这两个问题一直停留在哲学思辨上.广义相对论问世后,改变了这一状况,它提出,空间肯定是无边的,虽然不能确定它是否有限,但已明确给出了决定空间是否有限的判据.热力学第三定律禁止时间有开始和结束,只要第三定律正确,时间就应该是无限的.时间的无限性与广义相对论的奇点困难密切相关. 广义相对论告诉我们,黑洞内部有一个奇点或奇环,膨胀的宇宙起源于大爆炸初始奇点,脉动的宇宙还有一个终结奇点.这些奇点和奇环与坐标系选择无关,反映时空内在的性质.奇点处时空曲率无限大,物质密度无穷大.奇点是物理理论无法了解的地方,随时可能产生无法预测的信息.奇环附近还有"闭合类时线",沿着这类曲线运动的人会回到自己的过去.这些事件与因果律发生了冲突. 人们不希望时空中有奇点,有些人推测真实的事空没有奇点,上述奇点是因为我们的模型太理想化了.比如,黑动要"球对称"或"轴对称",这都是理想化模型,只要对称性不绝对严格就不会出现奇点和奇环.但是彭若斯不相信这些推测,他认为奇点是不可避免的,通过微分几何的严格证明,他针锋相对的提出了"奇点定理".这一定理说,只要广义相对论正确,因果性成立,那么任何能量非负且有物质存在的时空都至少有一个奇点.霍金也参加进来,给出了另外的证明.彭若斯和霍金在证明过程中对"奇点"概念进行了重新认识,提出了极其重要的新思想:奇点应该看作时间的开始或终结.因此奇点定理的实质内容是:广义相对论正确,因果性成立,能量非负且有物质存在的时空中,至少有一个可实现的物理过程,它的时间有开始或有终结,或既有开始又有终结. 总之,奇点定理告诉我们,时间是有限的.这与热力学第三定律发生了冲突.后来研究表明,奇点定理是在绝对零度或温度无穷大环境下证明的,没有考虑温度的影响,也就是说,奇点定理是在非物理的情况下证明的,它违背了热力学第三定律.有理由相信,热力学第三定律可以排除奇点,保证时间的无限性.在这一回合中第三定律占了上风.但第三定律具体通过什么方式来阻止奇点的形成仍不十分清楚,因此时间是否有限这一问题还不能做出非常肯定的回答. 由霍金辐射一节我们知道,黑洞的热效应与真空密不可分.真空并不像想象的那样简单,它有着极为丰富的内涵.为使我们对真空有一个大致的了解,下期内容将以黑洞漫谈之真空效应结束黑洞方面的内容.
(连载之十六)黑洞漫谈之黑洞涉及的根本问题 黑洞之所以被称为二十一世纪的主旋律是因为它涉及到了物理学中的一些根本问题.比如,小黑洞涉及到大爆炸,白洞,宇宙年龄,质子大小,静电力与引力强度比等等.总之,涉及到宇宙生成问题.常规黑洞涉及到宇宙大尺度模型,我们的宇宙是否真是一个大黑洞?是否存在一个超巨型黑洞向白洞转化的一场大爆炸?"大爆炸"一般指物质和时空一起在大爆炸中产生,是时空本身在爆炸,而不是物质在现有时空中爆炸. 黑洞触动了物理学的基础.比如,可能破坏重子数守恒定律.重子数守恒是指质子,中子,超子等所谓重子的总数永远是不变的.此定律在基本粒子理论中有重要作用.例如:原子弹,氢弹,反应堆,以及恒星内部的热核反应可以释放巨大的静止能,但是它们的原子能利用率却不到1%.这是由重子数守恒限制的.参与核反应的重子不能减少,因此核反应释放的能量是核子间结合能的差额,一般不超过1%.根据黑洞无毛定理,黑洞只有质量角动量电荷三个参量,物质的其他性质(比如重子数)进入黑洞后完全消失,因为重子已经在奇点附近被压碎了.但黑洞通过霍金辐射放出的粒子只决定于质量角动量电荷三个参量.黑洞发射重子和反重子的几率相等.因此,通过黑洞的形成和消失使物质中巨大数量的重子消失了,从而破坏重子数守恒.黑洞有比量子力学更大的不确定性,我们对黑洞内部细节并不十分清楚,对黑洞放出的粒子状态不能作多少预言.任何物质都可以塌缩为黑洞,但除了质量角动量电荷之外,其他一切参量都彻底消失了.如果此黑洞再向外放出物质,就已经只取决于这三个参量了.因此,当将产生黑洞前的物质状态和黑洞再消失的过程中放出的物质比较时,除了质量角动量电荷外其他物理量其他物理量可能就全都不守恒了.因此,似乎只有两种可能,一是没有其他守恒律,二是黑洞产生和再消失是不可能的或者要受到极大的限制,使它不影响其他定律. 黑洞还引出了物理学中的奇点困难,奇点是时空曲率无限大的地方,是时空的病态部分.任何物理定律面对这样一个点都无能为力.目前绝大多数物理学家都不承认时空中存在奇点,然而却找不到解决的方法.奇点困难已经成为21世纪两大疑难之一.新的理论有希望从这里得到发展. 下期内容就是黑洞漫谈之奇点困难.
(连载之十二)黑洞漫谈之带电黑洞 带电黑洞又称R-N黑洞,它与不带电黑洞的区别是,它有两个视界.落入黑洞的飞船,一旦穿过外视界,就不可抗拒的穿越内外视界间的空间,但穿过内视界后,飞船将自由的飞翔.在那里飞船不至于落到中心奇点上.在奇点附近有巨大的天体引潮力,会把包括飞船在内的所有物质全部撕碎.不过飞船可以避开奇点.后来研究表明,飞船根本不可能靠近中心奇点,只有光才可以抵达那里.任何有静质量的物体都不能在有限时间内到达奇点.进入内视界之后,还可以从另一个宇宙中的白洞穿出,进入另一个宇宙.这就是带电黑洞的虫洞.这类虫洞是可以穿越的,也就是说我们有可能进入另一个宇宙. 如果不断增加R-N黑洞的电荷,将出现内外视界合二为一的局面.这时的黑洞称为极端R-N黑洞.如果再对极端黑洞加一点电荷,则视界消失,奇点将裸露出来,产生"裸奇异"现象.按目前的观点,奇点不属于时空,那里的性质完全不确定,裸奇点往往会向外发出不确定信息,导致时空和物质演化完全不确定.为了避免这一现象的出现,彭若斯提出了宇宙监督假设:存在一位宇宙监督,它禁止裸奇异的出现.只要把奇点用视界包起来,它发出的不确定信息就不会跑出黑洞,因此不会影响宇宙的演化.但是在内视界内部,进入黑洞的人仍可能看到奇点,仍会受它们的奇异性的影响.彭若斯改进他的宇宙监督假设,认为内视界内部的时空是不稳定的,在微扰下它会"倒"在内视界上阻止飞船进入这类区域.最近的研究表明,内视界内部的确有不稳定的倾向.因此,如果他的假设成立,这类虫洞仍是不可超越的,我们仍然不能进入另一个宇宙. 但是,"宇宙监督"究竟是什么?这就像当年不了解大气压强而提出的"自然界害怕真空"一样,提出"自然界害怕奇点".在物理学上没有解决任何问题.如果假设正确,它必定是一条物理定律.也许是我们还不知道的一条定律,但更可能是我们已经知道的一条定律.随着黑洞热力学的深入发展,物理学家们已经越来越肯定,宇宙监督极有可能就是热力学第三定律:不可能通过有限次操作将温度降到绝对零度. 下期内容是黑洞漫谈之旋转黑洞.
(连载之十一)黑洞漫谈之静态中性黑洞 利用牛顿理论可知,当逃逸速度达到光速时,光也无法从星球表面射出,这就是牛顿黑洞.光的波动说战胜微粒说后,牛顿黑洞被人们淡忘了,因为波是不受引力影响的.有趣的是,从广义相对论计算出的黑洞条件与牛顿理论计算出的完全相同,从现代眼光看,牛顿理论的推导犯了两个错误:(1)将光子动能MC^2写成了(1/2)MC^2,(2)把时空弯曲当成了万有引力.两个错误相互抵消却得到了正确的结论.因此静态中性黑洞的视界半径与牛顿黑洞的半径完全相同.视界就是(在经典范围内,相对论属于经典物理)任何物质都无法逃离的边界. 我们说的黑洞大小是指它的视界大小,黑洞内部其实基本空无一物,只有一个奇点.这个点的体积无穷小,密度无穷大,所有的物质都被压缩到这个点里.先前我们说过,奇点可能不存在,我们把它当很小的点就可以了.我们来看黑洞吞噬物质的场面:假设两艘飞船里分别有两个人A和B,A远离黑洞,B被黑洞吸引.在B看来,它不断的接近黑洞,不断的加速,以接近光速的速度穿过视界,又以极短的时间撞向中心奇点,被压的粉身碎骨,连原子核都被压碎.在A看来,他看不到B的真实过程,他看到B先加速后减速最后停在视界处,逐渐变暗,最终消失.A看到的只是B的飞船上外壳发出的光的行为,B的真实部分早在A不知不觉中撞向了中心奇点.之所以会有减速过程是因为接近黑洞处时间膨胀,使A看到的速度变慢甚至接近零了.A看到的光停在视界上并不与光速不变原理相矛盾,光速不变原理指的是在四维时空中,光走过的四维距离是零.当时空平直时,三维光速是个常数.时空弯曲时,三维空间中光会偏折.在视界处,时空极度弯曲,无穷远处的观察者看到的光速是零.但在视界附近看到的光速还是光速,因为在小区域内时间进度是相同的.光速不变不是简单的指无论在什么情况下光都是所谓的匀速直线运动.不过三维空间中任何物质的速度都不超过光速目前仍是正确的. 通过坐标变换,可以得到宇宙的克鲁斯卡时空,它将全时空分为四个对称区域.奇怪的是我们的宇宙似乎只占两个区域,其中1区是我们普通的宇宙,2区是黑洞视界内的宇宙,3区是一个与我们的宇宙对称的宇宙,通过虫洞与我们的宇宙相连,只是这种虫洞只有超光速信号才能通过,光与普通物质无法通过这种黑洞的虫洞进入另一个宇宙.4区是白洞视界内的宇宙.可以说黑洞理论预言了白洞和另一个宇宙.白洞和黑洞相反,经典范围内是个只出不进的天体,它也符合物质不灭定律,它吐出的物质是原本就存在的.方程中虽有白洞解,但不等于现实中一定存在白洞,只是有存在的可能性.霍金等人证明,小黑洞与白洞不可区分.有人猜测黑洞和白洞可以相互转化,白洞喷发的物质来自黑洞吞噬的物质,甚至宇宙的原始大爆炸就是白洞喷发.按大爆炸标准模型,宇宙最可能的结局是物质收缩为原初奇点.全宇宙的物质收缩为一个点,在这样的极端条件下有可能存在黑洞向白洞转化的条件,从而引发下一轮宇宙大爆炸. 下期内容是黑洞漫谈之带电黑洞.
(连载之九)广义相对论的实验验证 爱因斯坦在建立广义相对论时,就提出了三个实验,并很快就得到了验证:(1)引力红移(2)光线偏折(3)水星近日点进动.直到最近才增加了第四个验证:(4)雷达回波的时间延迟. (1)引力红移:广义相对论证明,引力势低的地方固有时间的流逝速度慢.也就是说离天体越近,时间越慢.这样,天体表面原子发出的光周期变长,由于光速不变,相应的频率变小,在光谱中向红光方向移动,称为引力红移.宇宙中有很多致密的天体,可以测量它们发出的光的频率,并与地球的相应原子发出的光作比较,发现红移量与相对论语言一致.60年代初,人们在地球引力场中利用伽玛射线的无反冲共振吸收效应(穆斯堡尔效应)测量了光垂直传播22.5M产生的红移,结果与相对论预言一致. (2)光线偏折:如果按光的波动说,光在引力场中不应该有任何偏折,按半经典式的"量子论加牛顿引力论"的混合产物,用普朗克公式E=hr和质能公式E=MC^2求出光子的质量,再用牛顿万有引力定律得到的太阳附近的光的偏折角是0.87秒,按广义相对论计算的偏折角是1.75秒,为上述角度的两倍.1919年,一战刚结束,英国科学家爱丁顿派出两支考察队,利用日食的机会观测,观测的结果约为1.7秒,刚好在相对论实验误差范围之内.引起误差的主要原因是太阳大气对光线的偏折.最近依靠射电望远镜可以观测类星体的电波在太阳引力场中的偏折,不必等待日食这种稀有机会.精密测量进一步证实了相对论的结论. (3)水星近日点的进动:天文观测记录了水星近日点每百年移动5600秒,人们考虑了各种因素,根据牛顿理论只能解释其中的5557秒,只剩43秒无法解释.广义相对论的计算结果与万有引力定律(平方反比定律)有所偏差,这一偏差刚好使水星的近日点每百年移动43秒. (4)雷达回波实验:从地球向行星发射雷达信号,接收行星反射的信号,测量信号往返的时间,来检验空间是否弯曲(检验三角形内角和)60年代,美国物理学家克服重重困难做成了此实验,结果与相对论预言相符. 仅仅依靠这些实验不足以说明相对论的正确性,只能说明它是比牛顿引力理论更精确的理论,因为它既包含牛顿引力论,又可以解释牛顿理论无法解释的现象.但不能保证这就是最好的理论,也不能保证相对论在时空极度弯曲的区域(比如黑洞)是否成立.因此,广义相对论仍面临考验. 下期内容是黑洞漫谈之常规黑洞简介.
(连载之八)蚂蚁与蜜蜂的几何学 设想有一种生活在二维面上的扁平蚂蚁,因为是二维生物,所以没有第三维感觉.如果蚂蚁生活在大平面上,就从实践中创立欧氏几何.如果它生活在一个球面上,就会创立一种三角和大于180度,圆周率小于3.14的球面几何学.但是,如果蚂蚁生活在一个很大的球面上,当它的"科学"还不够发达,活动范围还不够大,它不足以发现球面的弯曲,它生活的小块球面近似于平面,因此它将先创立欧氏几何学.当它的"科学技术"发展起来时,它会发现三角和大于180度,圆周率小于3.14等"实验事实".如果蚂蚁够聪明,它会得到结论,它们的宇宙是一个弯曲的二维空间,当它把自己的"宇宙"测量遍了时,会得出结论,它们的宇宙是封闭的(绕一圈还会回到原地),有限的,而且由于"空间"(曲面)的弯曲程度(曲率)处处相同,它们会将宇宙与自己的宇宙中的圆类比起来,认为宇宙是"圆形的".由于没有第三维感觉,所以它无法想象,它们的宇宙是怎样弯曲成一个球的,更无法想象它们这个"无边无际"的宇宙是存在于一个三维平直空间中的有限面积的球面.它们很难回答"宇宙外面是什么"这类问题.因为,它们的宇宙是有限无边的封闭的二维空间,很难形成"外面"这一概念. 对于蚂蚁必须借助"发达的科技"才能发现的抽象的事实,一只蜜蜂却可以很容易凭直观形象的描述出来.因为蜜蜂是三维空间的生物,对于嵌在三维空间的二维曲面是"一目了然"的,也很容易形成球面的概念.蚂蚁凭借自己的"科学技术"得到了同样的结论,却很不形象,是严格数学化的. 由此可见,并不是只有高维空间的生物才能发现低维空间的情况,聪明的蚂蚁一样可以发现球面的弯曲,并最终建立起完善的球面几何学,其认识深度并不比蜜蜂差多少. 黎曼几何是一个庞大的几何公理体系,专门用于研究弯曲空间的各种性质.球面几何只是它极小的一个分支.它不仅可用于研究球面,椭圆面,双曲面等二维曲面,还可用于高维弯曲空间的研究.它是广义相对论最重要的数学工具. 黎曼在建立黎曼几何时曾预言,真实的宇宙可能是弯曲的,物质的存在就是空间弯曲的原因.这实际上就是广义相对论的核心内容.只是当时黎曼没有像爱因斯坦那样丰富的物理学知识,因此无法建立广义相对论. 下期讲的是广义相对论的实验验证.
(连载之七)广义相对论基本原理 由于惯性系无法定义,爱因斯坦将相对性原理推广到非惯性系,提出了广义相对论的第一个原理:广义相对性原理.其内容是,所有参考系在描述自然定律时都是等效的.这与狭义相对性原理有很大区别.在不同参考系中,一切物理定律完全等价,没有任何描述上的区别.但在一切参考系中,这是不可能的,只能说不同参考系可以同样有效的描述自然律.这就需要我们寻找一种更好的描述方法来适应这种要求.通过狭义相对论,很容易证明旋转圆盘的圆周率大于3.14.因此,普通参考系应该用黎曼几何来描述.第二个原理是光速不变原理:光速在任意参考系内都是不变的.它等效于在四维时空中光的时空点是不动的.当时空是平直的,在三维空间中光以光速直线运动,当时空弯曲时,在三维空间中光沿着弯曲的空间运动.可以说引力可使光线偏折,但不可加速光子.第三个原理是最著名的等效原理.质量有两种,惯性质量是用来度量物体惯性大小的,起初由牛顿第二定律定义.引力质量度量物体引力荷的大小,起初由牛顿的万有引力定律定义.它们是互不相干的两个定律.惯性质量不等于电荷,甚至目前为止没有任何关系.那么惯性质量与引力质量(引力荷)在牛顿力学中不应该有任何关系.然而通过当代最精密的试验也无法发现它们之间的区别,惯性质量与引力质量严格成比例(选择适当系数可使它们严格相等).广义相对论将惯性质量与引力质量完全相等作为等效原理的内容.惯性质量联系着惯性力,引力质量与引力相联系.这样,非惯性系与引力之间也建立了联系.那么在引力场中的任意一点都可以引入一个很小的自由降落参考系.由于惯性质量与引力质量相等,在此参考系内既不受惯性力也不受引力,可以使用狭义相对论的一切理论.初始条件相同时,等质量不等电荷的质点在同一电场中有不同的轨道,但是所有质点在同一引力场中只有唯一的轨道.等效原理使爱因斯坦认识到,引力场很可能不是时空中的外来场,而是一种几何场,是时空本身的一种性质.由于物质的存在,原本平直的时空变成了弯曲的黎曼时空.在广义相对论建立之初,曾有第四条原理,惯性定律:不受力(除去引力,因为引力不是真正的力)的物体做惯性运动.在黎曼时空中,就是沿着测地线运动.测地线是直线的推广,是两点间最短(或最长)的线,是唯一的.比如,球面的测地线是过球心的平面与球面截得的大圆的弧.但广义相对论的场方程建立后,这一定律可由场方程导出,于是惯性定律变成了惯性定理.值得一提的是,伽利略曾认为匀速圆周运动才是惯性运动,匀速直线运动总会闭合为一个圆.这样提出是为了解释行星运动.他自然被牛顿力学批的体无完肤,然而相对论又将它复活了,行星做的的确是惯性运动,只是不是标准的匀速圆周而已. 为加深对黎曼几何的初步印象,下期讲的是蚂蚁和蜜蜂的几何学.
(连载之六)广义相对论概述 (今后提到相对论都是指广义相对论) 相对论问世,人们看到的结论就是:四维弯曲时空,有限无边宇宙,引力波,引力透镜,大爆炸宇宙学说,以及二十一世纪的主旋律--黑洞等等.这一切来的都太突然,让人们觉得相对论神秘莫测,因此在相对论问世头几年,一些人扬言"全世界只有十二个人懂相对论".甚至有人说"全世界只有两个半人懂相对论".更有甚者将相对论与"通灵术","招魂术"之类相提并论.其实相对论并不神秘,它是最脚踏实地的理论,是经历了千百次实践检验的真理,更不是高不可攀的. 相对论应用的几何学并不是普通的欧几里得几何,而是黎曼几何.相信很多人都知道非欧几何,它分为罗氏几何与黎氏几何两种.黎曼从更高的角度统一了三种几何,称为黎曼几何.在非欧几何里,有很多奇怪的结论.三角形内角和不是180度,圆周率也不是3.14等等.因此在刚出台时,倍受嘲讽,被认为是最无用的理论.直到在球面几何中发现了它的应用才受到重视. 空间如果不存在物质,时空是平直的,用欧氏几何就足够了.比如在狭义相对论中应用的,就是四维伪欧几里得空间.加一个伪字是因为时间坐标前面还有个虚数单位i.当空间存在物质时,物质与时空相互作用,使时空发生了弯曲,这是就要用非欧几何. 相对论预言了引力波的存在,发现了引力场与引力波都是以光速传播的,否定了万有引力定律的超距作用.当光线由恒星发出,遇到大质量天体,光线会重新汇聚,也就是说,我们可以观测到被天体挡住的恒星.一般情况下,看到的是个环,被称为爱因斯坦环.爱因斯坦将场方程应用到宇宙时,发现宇宙不是稳定的,它要么膨胀要么收缩.当时宇宙学认为,宇宙是无限的,静止的,恒星也是无限的.于是他不惜修改场方程,加入了一个宇宙项,得到一个稳定解,提出有限无边宇宙模型.不久哈勃发现著名的哈勃定律,提出了宇宙膨胀学说.爱因斯坦为此后悔不已,放弃了宇宙项,称这是他一生最大的错误.在以后的研究中,物理学家们惊奇的发现,宇宙何止是在膨胀,简直是在爆炸.极早期的宇宙分布在极小的尺度内,宇宙学家们需要研究粒子物理的内容来提出更全面的宇宙演化模型,而粒子物理学家需要宇宙学家们的观测结果和理论来丰富和发展粒子物理.这样,物理学中研究最大和最小的两个目前最活跃的分支:粒子物理学和宇宙学竟这样相互结合起来.就像高中物理序言中说的那样,如同一头怪蟒咬住了自己的尾巴.值得一提的是,虽然爱因斯坦的静态宇宙被抛弃了,但它的有限无边宇宙模型却是宇宙未来三种可能的命运之一,而且是最有希望的.近年来宇宙项又被重新重视起来了.黑洞问题将在今后的文章中讨论.黑洞与大爆炸虽然是相对论的预言,它们的内容却已经超出了相对论的限制,与量子力学,热力学结合的相当紧密.今后的理论有希望在这里找到突破口. 下期将对广义相对论的基本原理作一些说明.
(连载之四)时钟佯谬或双生子佯谬 相对论诞生后,曾经有一个令人极感兴趣的疑难问题---双生子佯谬.一对双生子A和B,A在地球上,B乘火箭去做星际旅行,经过漫长岁月返回地球.爱因斯坦由相对论断言,二人经历的时间不同,重逢时B将比A年轻.许多人有疑问,认为A看B在运动,B看A也在运动,为什么不能是A比B年轻呢?由于地球可近似为惯性系,B要经历加速与减速过程,是变加速运动参考系,真正讨论起来非常复杂,因此这个爱因斯坦早已讨论清楚的问题被许多人误认为相对论是自相矛盾的理论.如果用时空图和世界线的概念讨论此问题就简便多了,只是要用到许多数学知识和公式.在此只是用语言来描述一种最简单的情形.不过只用语言无法更详细说明细节,有兴趣的请参考一些相对论书籍.我们的结论是,无论在那个参考系中,B都比A年轻. 为使问题简化,只讨论这种情形,火箭经过极短时间加速到亚光速,飞行一段时间后,用极短时间掉头,又飞行一段时间,用极短时间减速与地球相遇.这样处理的目的是略去加速和减速造成的影响.在地球参考系中很好讨论,火箭始终是动钟,重逢时B比A年轻.在火箭参考系内,地球在匀速过程中是动钟,时间进程比火箭内慢,但最关键的地方是火箭掉头的过程.在掉头过程中,地球由火箭后方很远的地方经过极短的时间划过半个圆周,到达火箭的前方很远的地方.这是一个"超光速"过程.只是这种超光速与相对论并不矛盾,这种"超光速"并不能传递任何信息,不是真正意义上的超光速.如果没有这个掉头过程,火箭与地球就不能相遇,由于不同的参考系没有统一的时间,因此无法比较他们的年龄,只有在他们相遇时才可以比较.火箭掉头后,B不能直接接受A的信息,因为信息传递需要时间.B看到的实际过程是在掉头过程中,地球的时间进度猛地加快了.在B看来,A现实比B年轻,接着在掉头时迅速衰老,返航时,A又比自己衰老的慢了.重逢时,自己仍比A年轻.也就是说,相对论不存在逻辑上的矛盾. 下期将对狭义相对论作一个小结,因为本连载的重点是广义相对论,因此对狭义相对论的内容草草了事.下期将提出狭义相对论的不足之处,及对建立广义相对论的必要性做一些说明.
(连载之三)狭义相对论效应 根据狭义相对性原理,惯性系是完全等价的,因此,在同一个惯性系中,存在统一的时间,称为同时性,而相对论证明,在不同的惯性系中,却没有统一的同时性,也就是两个事件(时空点)在一个关性系内同时,在另一个惯性系内就可能不同时,这就是同时的相对性,在惯性系中,同一物理过程的时间进程是完全相同的,如果用同一物理过程来度量时间,就可在整个惯性系中得到统一的时间.在今后的广义相对论中可以知道,非惯性系中,时空是不均匀的,也就是说,在同一非惯性系中,没有统一的时间,因此不能建立统一的同时性. 相对论导出了不同惯性系之间时间进度的关系,发现运动的惯性系时间进度慢,这就是所谓的钟慢效应.可以通俗的理解为,运动的钟比静止的钟走得慢,而且,运动速度越快,钟走的越慢,接近光速时,钟就几乎停止了. 尺子的长度就是在一惯性系中"同时"得到的两个端点的坐标值的差.由于"同时"的相对性,不同惯性系中测量的长度也不同.相对论证明,在尺子长度方向上运动的尺子比静止的尺子短,这就是所谓的尺缩效应,当速度接近光速时,尺子缩成一个点. 由以上陈述可知,钟慢和尺缩的原理就是时间进度有相对性.也就是说,时间进度与参考系有关.这就从根本上否定了牛顿的绝对时空观,相对论认为,绝对时间是不存在的,然而时间仍是个客观量.比如在下期将讨论的双生子理想实验中,哥哥乘飞船回来后是15岁,弟弟可能已经是45岁了,说明时间是相对的,但哥哥的确是活了15年,弟弟也的确认为自己活了45年,这是与参考系无关的,时间又是"绝对的".这说明,不论物体运动状态如何,它本身所经历的时间是一个客观量,是绝对的,这称为固有时.也就是说,无论你以什么形式运动,你都认为你喝咖啡的速度很正常,你的生活规律都没有被打乱,但别人可能看到你喝咖啡用了100年,而从放下杯子到寿终正寝只用了一秒钟. 下期要讲的是时间佯缪或双生子佯缪,也许它会加深我们对时间的理解.
首页 1 2 3 4 下一页