level 1
associat_
楼主
Reduce[-8 \[Alpha] + b^2 (3 + 4 \[Alpha] + \[Alpha]^2) +
2 b (6 + 7 \[Alpha] + \[Alpha]^2) > 0, b]
其中b>0,1 > \[Alpha] > 0,求b或Alpha的取值范围。我自己运行的结果不满意
用
Assuming[1 > \[Alpha] > 0 &&
b > 0, {Reduce[-8 \[Alpha] + b^2 (3 + 4 \[Alpha] + \[Alpha]^2) +
2 b (6 + 7 \[Alpha] + \[Alpha]^2) > 0, b, Reals]}]
结果只复制一部分
{(\[Alpha] < Root[36 + 72*
#1 + 21*#
1^2 + #1^3 & , 1, 0] &&
(b < (-6 - \[Alpha])/(3 + \[Alpha]) -
Sqrt[(36 + 72*\[Alpha] + 21*\[Alpha]^2 +
\[Alpha]^3)/((1 + \[Alpha])*(3 + \[Alpha])^2)] ||
b > (-6 - \[Alpha])/(3 + \[Alpha]) +
Sqrt[(36 + 72*\[Alpha] + 21*\[Alpha]^2 +
\[Alpha]^3)/((1 + \[Alpha])*(3 + \
\[Alpha])^2)])) ||
(\[Alpha] == Root[36 + 72*
#1 + 21*#
1^2 + #1^3 & , 1, 0] &&
(b < (-6 - \[Alpha])/(3 + \[Alpha]) -
Sqrt[(36 + 72*\[Alpha] + 21*\[Alpha]^2 +
\[Alpha]^3)/((1 + \[Alpha])*(3 + \[Alpha])^2)] ||
b > (-6 - \[Alpha])/(3 + \[Alpha]) -
Sqrt[(36 + 72*\[Alpha] + 21*\[Alpha]^2 +
\[Alpha]^3)/((1 + \[Alpha])*(3 + \
\[Alpha])^2)])) ||
Root[36 + 72*
#1 + 21*#
1^2 + #1^3 & , 1, 0] < \[Alpha] <
Root[36 + 72*
#1 + 21*#
1^2 + #1^3 & , 2, 0] ||
(\[Alpha] == Root[36 + 72*
#1 + 21*#
1^2 + #1^3 & , 2, 0] &&
(b < (-6 - \[Alpha])/(3 + \[Alpha]) -
Sqrt[(36 + 72*\[Alpha] + 21*\[Alpha]^2 +
\[Alpha]^3)/((1 + \[Alpha])*(3 + \[Alpha])^2)] ||
b > (-6 - \[Alpha])/(3 + \[Alpha]) -
Sqrt[(36 + 72*\[Alpha] + 21*\[Alpha]^2 +
\[Alpha]^3)/((1 + \[Alpha])*(3 + \
\[Alpha])^2)])) ||
(Root[36 + 72*
#1 + 21*#
1^2 + #1^3 & , 2, 0] < \[Alpha] < -3 &&
(b < (-6 - \[Alpha])/(3 + \[Alpha]) -
Sqrt[(36 + 72*\[Alpha] + 21*\[Alpha]^2 +
\[Alpha]^3)/((1 + \[Alpha])*(3 + \[Alpha])^2)] ||
b > (-6 - \[Alpha])/(3 + \[Alpha]) +
Sqrt[(36 + 72*\[Alpha] + 21*\[Alpha]^2 +
\[Alpha]^3)/((1 + \[Alpha])*(3 + \
\[Alpha])^2)])) ||
(\[Alpha] == -3 && b < 2) || (-3 < \[Alpha] < -1 &&
结果是一大串,直接吓晕本小白。请教如果求出符合取值范围的结果。感谢这个贴吧。
2023年02月20日 05点02分
1
2 b (6 + 7 \[Alpha] + \[Alpha]^2) > 0, b]
其中b>0,1 > \[Alpha] > 0,求b或Alpha的取值范围。我自己运行的结果不满意
用
Assuming[1 > \[Alpha] > 0 &&
b > 0, {Reduce[-8 \[Alpha] + b^2 (3 + 4 \[Alpha] + \[Alpha]^2) +
2 b (6 + 7 \[Alpha] + \[Alpha]^2) > 0, b, Reals]}]
结果只复制一部分
{(\[Alpha] < Root[36 + 72*
#1 + 21*#
1^2 + #1^3 & , 1, 0] &&
(b < (-6 - \[Alpha])/(3 + \[Alpha]) -
Sqrt[(36 + 72*\[Alpha] + 21*\[Alpha]^2 +
\[Alpha]^3)/((1 + \[Alpha])*(3 + \[Alpha])^2)] ||
b > (-6 - \[Alpha])/(3 + \[Alpha]) +
Sqrt[(36 + 72*\[Alpha] + 21*\[Alpha]^2 +
\[Alpha]^3)/((1 + \[Alpha])*(3 + \
\[Alpha])^2)])) ||
(\[Alpha] == Root[36 + 72*
#1 + 21*#
1^2 + #1^3 & , 1, 0] &&
(b < (-6 - \[Alpha])/(3 + \[Alpha]) -
Sqrt[(36 + 72*\[Alpha] + 21*\[Alpha]^2 +
\[Alpha]^3)/((1 + \[Alpha])*(3 + \[Alpha])^2)] ||
b > (-6 - \[Alpha])/(3 + \[Alpha]) -
Sqrt[(36 + 72*\[Alpha] + 21*\[Alpha]^2 +
\[Alpha]^3)/((1 + \[Alpha])*(3 + \
\[Alpha])^2)])) ||
Root[36 + 72*
#1 + 21*#
1^2 + #1^3 & , 1, 0] < \[Alpha] <
Root[36 + 72*
#1 + 21*#
1^2 + #1^3 & , 2, 0] ||
(\[Alpha] == Root[36 + 72*
#1 + 21*#
1^2 + #1^3 & , 2, 0] &&
(b < (-6 - \[Alpha])/(3 + \[Alpha]) -
Sqrt[(36 + 72*\[Alpha] + 21*\[Alpha]^2 +
\[Alpha]^3)/((1 + \[Alpha])*(3 + \[Alpha])^2)] ||
b > (-6 - \[Alpha])/(3 + \[Alpha]) -
Sqrt[(36 + 72*\[Alpha] + 21*\[Alpha]^2 +
\[Alpha]^3)/((1 + \[Alpha])*(3 + \
\[Alpha])^2)])) ||
(Root[36 + 72*
#1 + 21*#
1^2 + #1^3 & , 2, 0] < \[Alpha] < -3 &&
(b < (-6 - \[Alpha])/(3 + \[Alpha]) -
Sqrt[(36 + 72*\[Alpha] + 21*\[Alpha]^2 +
\[Alpha]^3)/((1 + \[Alpha])*(3 + \[Alpha])^2)] ||
b > (-6 - \[Alpha])/(3 + \[Alpha]) +
Sqrt[(36 + 72*\[Alpha] + 21*\[Alpha]^2 +
\[Alpha]^3)/((1 + \[Alpha])*(3 + \
\[Alpha])^2)])) ||
(\[Alpha] == -3 && b < 2) || (-3 < \[Alpha] < -1 &&
结果是一大串,直接吓晕本小白。请教如果求出符合取值范围的结果。感谢这个贴吧。