一个初中问题,求证两线段等长
数学吧
全部回复
仅看楼主
level 10
authorname 楼主
如图所示,过圆O的圆心作一直线交圆O于A、A[2]两点,分别过点O、A作直线OA的垂线l[1]、l[2],l[1]与圆O交于两点A[3]、A[4]。在圆上任取一点Q(不与点A、A[2]、A[3]、A[4]重合),作直线OQ,过点Q作l[1]的垂线QB,垂足为点B,作直线AB交直线OQ于点P,过点P作l[1]的垂线分别交l[1]、l[2]于点C、D。求证:PO与PD长度相等。
2012年10月24日 12点10分 1
level 10
神初中题给跪了..
2012年10月24日 13点10分 2
嗯......我感觉像是,不要被吓倒了
2012年10月24日 13点10分
level 5
三角形PBC和三角形PAD相似,有比列PD/CD=PB/PA。
三角形PQB和三角形POA相似,有比列PO/QO=PB/PA.
所以PD/CD=PO/QO。又因为CD=OA,OA=QO。
故有PD=PO。
2012年10月24日 13点10分 3
4楼的我汗颜了,原来这么简单,我还是不玩平几了。。。
2012年10月24日 13点10分
level 5
我想说我用解几解出来了那个抛物线,证明了结论,可这真是初中题。。。
2012年10月24日 13点10分 4
教育的悲哀啊!学得越多包袱越多!
2012年10月24日 13点10分
回复 毅之然 :没办法啊,看到结论直接就想到抛物线了,然后。。。思维定势很难改的。。
2012年10月24日 13点10分
这是在几何画板上画抛物线的最好方法,比直接根据定义(动点到定点和定直线的距离相等)要好
2012年10月24日 13点10分
抛物线是有这性质 你们一定是做解析几何题做多了!
2012年10月24日 14点10分
1