level 4
从数学的角度与物理的角度说明一下,数学应该知道什么?比如:极限呀,微积分呀等等
物理应该知道什么?比如:波粒二象性之类的....
求大神啦!!!
2012年08月14日 05点08分
1
level 12
等你高二时物理拔尖再说吧。。。高考要粗色,离梦想更进一步
2012年08月14日 05点08分
2
level 9
数学:
1、老老实实把课本上的题目做完。其实说科大的课本难,我以为这话不完整。科大的教材,就数学系而言还是讲得挺清楚的,难的是后面的习题。事实上做1道难题的收获是做10道简单题所不能比的。
2、每门数学必修课至少要看一本参考书,尽量做一本习题集。
3、数学分析别做吉米,除非你太无聊,推荐北大方企勤的习题集。此外注意一下有套波兰的数学分析习题集,是不是搞得到中文或英文版。
4、线性代数推荐普罗斯库列科夫的<<线性代数习题集>>和法捷耶夫的<<高等代数习题集>>。莫斯科大学要求把上面的题全做光。建议大家在搞定亚洲第一难书的同时也把里面的题打通。
5、解析几何不要不重视。现在有种削弱几何课的倾向,甚至有的学校把解析几何课改成只有两课时,这样一来,几何训练不足,会很吃亏的。
6、常微要看看阿诺尔德的书,打通菲利波夫的习题集。
7、数论课是很重要的,起码可以锻炼思维能力。
8、数学分析、线性代数、解析几何、泛函、拓扑、抽象代数、实变、微分几何是最重要的课,大家脱层皮也要学好。要尽量加强这方面的工底,不然的话以后很吃亏。
9、华罗庚的<<数论导引>>的前言大家好好看看,多多领会!
10、推荐一些参考书:
B.A.卓里奇《数学分析》(第一卷有中文版,第二卷未翻译,会俄文的一定要看)
S.M.Nikolsky,A course of mathematical analysis(有中文版)
A.I.Kostrikin,Introduction to algebra(有中文版)
M.Postnikov,Analytic geometry(有中文版)
M.Postnikov,Linear algebra and differential geometry(有中文版)
G.H.Hardy,An Introduction to the Theory of Numbers
V.I.Arnold,Ordinary differential equation(有中文版)
H.嘉当,解析函数论初步
Kolmogorov,Elements of the Theory of Functions and Functional Analysis(有中文版,亚马逊上出售英文版,20美元一套)
Fomenko,Differential geometry and topology
Kelley,General Topology(有中文版)
2012年08月14日 05点08分
3
卓里奇的第二卷有中文版了。
2012年08月14日 12点08分
楼主好厉害,难道量子里面用到线代吗?我们高数线代都是同济大学出版社的,您推荐的书等回学校上图书馆找找~~~
2012年08月14日 13点08分
level 9
Bott,Differential forms in algebraic topology
莫宗坚《代数学》
Atiyah,Introduction to Commutative Algebra(有中文版)
Riesz,Functional Analysis(有中文版)
Landau,Mechanics(有中文版)
Goldstein,Classical Mechanics(有中文版)
Landau,The Classical Theory of Fields(有中文版)
Jackson,Classical Electrodynamics(有中文版)
Landau,Statistical Physics Part1(有中文版)
Kerson Huang,Statistical Mechanics
Landau,Quantum Mechanics(Non-relatisticTheory)(有中文版)
Greiner,Quantum Mechanics:A Introduction(有中文版)
黄昆《固体物理学》
Kittel,Introduction to Solid State Physics(有中文版)
费曼《费曼物理讲义》
玻恩《光学原理》
王梓坤《概率论基础及其应用》
方企勤《数学分析习题集》
普罗斯库列科夫《线性代数习题集》
法捷耶夫《高等代数习题集》
菲利波夫《常微分方程习题集》
沃尔维科斯基《复变函数习题集》
鄂强《实变函数的例题与习题》
符拉基米诺夫《偏微分方程习题集》
巴兹列夫《几何与拓扑习题集》
菲金科《微分几何习题集》
2012年08月14日 05点08分
4
level 9
物理:
一.绪论
1.了解光的波粒二象性的主要实验事实;
2.掌握德布罗意关于微观粒子的波粒二象性的假设。
二.波函数和薛定谔方程
(1)理解量子力学与经典力学在关于描写微观粒子运动状态及其运动规律时的不同观念 。
(2)掌握波函数的标准化条件:有限性、连续性、单值性.
(3)理解态叠加原理以及任何波函数Ψ(x,t)按不同动量的平面波展开的方法及其物理意义.
(4)了解薛定谔方程的建立过程以及它在量子力学中的地位;薛定谔方程和定态薛定谔方程的关系;波函数和定态波函数的关系.
(5)对于求解一维薛定谔方程,应掌握边界条件的确定和处理方法.
(6)关于一维定态问题要求如下:
a.掌握一维无限阱的求解方法及其物理讨论;
b.掌握一维谐振子的能谱及其定态波函数的一般特点:
c.了解势垒贯穿的讨论方法及其对隧道效应的解释.
三.力学量用算符表达
(1)掌握算符的本征值和本征方程的基本概念;厄米算符的本征值必为实数;坐标算符和动量算符以及量子力学中一切可观察的力学量所对应的算符均为厄米算符.
(2)掌握有关动量算符和角动量算符的本征值和本征函数,它们的归一性和正交性的表达形式,以及与这些算符有关的算符运算的对易关系式.
(3)电子在正点电荷库仑场中的运动提供了三维中心力场下薛定谔方程求解的范例,学生应由此了解一般三维中心力场下求解薛定谔方程的基本步骤和方法,特别是分离变量法.
(4)掌握力学量平均值的计算方法.将体系的状态波函数Ψ(x)按算符 的本征函数展开是这些方法中常用的方法之一,学生应掌握这一方法计算力学量的可能值、概率和平均值.理解在什么状态下力学量 具有确定值以及在什么条件下,两个力学量 同时具有确定值.
(5)掌握不确定关系并应用这一关系来估算一些体系的基态能量.
(6)掌握如何根据体系的哈密顿算符来判断该体系中可能存在的守恒量如:能量、动量、角动量、宇称等.
2012年08月14日 06点08分
5
level 11
只冲着量子力学的话,数学首先要看微积分,叫高等数学和数学分析的基本上也是微积分,叫数学分析的一般高端点。然后看数学物理方法,基本上能对付过去了。线性代数解析几何可以放后面。物理首先必须看力学,看热力学统计力学有助于理解(不看也行),然后大概就可以看量子力学了。量子力学的书最流行的是曾谨言,不过骂的人也不少。可以直接到亚马逊搜索,还可以到电驴资源和新浪资料找电子版的书
2012年08月14日 15点08分
8
level 4
谢谢楼上的各位,这下有了目标就知道怎么做啦。
谢谢了
2012年08月15日 04点08分
9
level 9
真心觉得上了大学再学士明智之举。其实普通物理也很厉害,培养一些物理思想,为量子力学相对论做准备,一口吃不了胖子
2012年08月15日 15点08分
10