level 7
s602292230
楼主
已知数列{a[n]}满足a[1]=2,a[n+1]=(1+a[n])/(1-a[n]),求通项。
解:∵a[n+1]=(1+a[n])/(1-a[n])
∴令a[n]=tanθ,则a[n+1]=[tan(π/4)+tanθ]/[1-tan(π/4)tanθ]=tan(π/4+θ)
∵θ=arctan(a[n]),π/4+θ=arctan(a[n+1])
∴上面两式相减,得:arctan(a[n+1])-arctan(a[n])=π/4
∵a[1]=2
∴{arctan(a[n])}是首项为arctan(a[1])=arctan2,公差为π/4的等差数列
即:arctan(a[n])=arctan2+(n-1)π/4
∴a[n]=tan[(n-1)π/4+arctan2]
2011年07月19日 07点07分
1
解:∵a[n+1]=(1+a[n])/(1-a[n])
∴令a[n]=tanθ,则a[n+1]=[tan(π/4)+tanθ]/[1-tan(π/4)tanθ]=tan(π/4+θ)
∵θ=arctan(a[n]),π/4+θ=arctan(a[n+1])
∴上面两式相减,得:arctan(a[n+1])-arctan(a[n])=π/4
∵a[1]=2
∴{arctan(a[n])}是首项为arctan(a[1])=arctan2,公差为π/4的等差数列
即:arctan(a[n])=arctan2+(n-1)π/4
∴a[n]=tan[(n-1)π/4+arctan2]