level 1
贴吧用户_74WEPKS
楼主
下面是代码
"F:\anaconda3\envs\GPTSoVits\python.exe" GPT_SoVITS/s1_train.py --config_file "F:\GPT-SoVITS\GPT-SoVITS\TEMP/tmp_s1.yaml"
Seed set to 1234
Using 16bit Automatic Mixed Precision (AMP)
GPU available: True (cuda), used: True
TPU available: False, using: 0 TPU cores
HPU available: False, using: 0 HPUs
<All keys matched successfully>
ckpt_path: None
Initializing distributed: GLOBAL_RANK: 0, MEMBER: 1/1
----------------------------------------------------------------------------------------------------
distributed_backend=gloo
All distributed processes registered. Starting with 1 processes
----------------------------------------------------------------------------------------------------
semantic_data_len: 16
phoneme_data_len: 16
item_name semantic_audio
0 vocal_1_無間道我和弟兄们雄心壮志-谁知道开张还不到半个月-每天平均被人扫荡1-3次-... 520 105 105 105 72 411 511 245 245 266 299 498...
1 vocal_1_無間道我和弟兄们雄心壮志-谁知道开张还不到半个月-每天平均被人扫荡1-3次-... 872 545 320 752 52 515 837 876 481 792 38 800 ...
2 vocal_1_無間道我和弟兄们雄心壮志-谁知道开张还不到半个月-每天平均被人扫荡1-3次-... 208 1005 382 760 89 684 470 743 837 588 110 98...
3 vocal_1_無間道我和弟兄们雄心壮志-谁知道开张还不到半个月-每天平均被人扫荡1-3次-... 520 105 280 486 280 280 53 32 748 515 320 134 ...
4 vocal_1_無間道我和弟兄们雄心壮志-谁知道开张还不到半个月-每天平均被人扫荡1-3次-... 54 318 1001 75 601 893 244 732 893 229 1000 20...
5 vocal_1_無間道我和弟兄们雄心壮志-谁知道开张还不到半个月-每天平均被人扫荡1-3次-... 913 14 1005 656 357 837 401 591 201 946 800 19...
6 vocal_1_無間道我和弟兄们雄心壮志-谁知道开张还不到半个月-每天平均被人扫荡1-3次-... 797 99 160 565 701 901 204 480 434 846 39 313 ...
7 vocal_1_無間道我和弟兄们雄心壮志-谁知道开张还不到半个月-每天平均被人扫荡1-3次-... 520 280 280 41 545 338 507 357 441 1001 679 50...
8 vocal_1_無間道我和弟兄们雄心壮志-谁知道开张还不到半个月-每天平均被人扫荡1-3次-... 520 29 200 434 658 480 159 309 862 293 341 115...
9 vocal_1_無間道我和弟兄们雄心壮志-谁知道开张还不到半个月-每天平均被人扫荡1-3次-... 913 411 411 23 90 545 910 45 4 499 354 918 491...
10 vocal_1_無間道我和弟兄们雄心壮志-谁知道开张还不到半个月-每天平均被人扫荡1-3次-... 913 90 215 90 594 191 506 908 987 751 498 607 ...
11 vocal_1_無間道我和弟兄们雄心壮志-谁知道开张还不到半个月-每天平均被人扫荡1-3次-... 837 507 1005 277 602 474 656 127 911 124 646 2...
12 vocal_1_無間道我和弟兄们雄心壮志-谁知道开张还不到半个月-每天平均被人扫荡1-3次-... 208 411 14 103 771 438 438 89 383 772 475 1003...
13 vocal_1_無間道我和弟兄们雄心壮志-谁知道开张还不到半个月-每天平均被人扫荡1-3次-... 520 105 105 105 271 280 536 271 505 609 947 15...
14 vocal_1_無間道我和弟兄们雄心壮志-谁知道开张还不到半个月-每天平均被人扫荡1-3次-... 520 271 574 685 539 145 623 90 290 366 817 307...
15 vocal_1_無間道我和弟兄们雄心壮志-谁知道开张还不到半个月-每天平均被人扫荡1-3次-... 520 105 280 280 280 280 875 1001 910 62 755 63...
dataset.__len__(): 96
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]
| Name | Type | Params | Mode
-------------------------------------------------------
0 | model | Text2SemanticDecoder | 77.6 M | train
-------------------------------------------------------
77.6 M Trainable params
0 Non-trainable params
77.6 M Total params
310.426 Total estimated model params size (MB)
257 Modules in train mode
0 Modules in eval mode
F:\anaconda3\envs\GPTSoVits\lib\site-packages\pytorch_lightning\loops\fit_loop.py:310: The number of training batches (16) is smaller than the logging interval Trainer(log_every_n_steps=50). Set a lower value for log_every_n_steps if you want to see logs for the training epoch.
Epoch 0: 0%| | 0/16 [00:00<?, ?it/s][rank0]: Traceback (most recent call last):
[rank0]: File "F:\GPT-SoVITS\GPT-SoVITS\GPT_SoVITS\s1_train.py", line 184, in <module>
[rank0]: main(args)
[rank0]: File "F:\GPT-SoVITS\GPT-SoVITS\GPT_SoVITS\s1_train.py", line 160, in main
[rank0]: trainer.fit(model, data_module, ckpt_path=ckpt_path)
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\pytorch_lightning\trainer\trainer.py", line 539, in fit
[rank0]: call._call_and_handle_interrupt(
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\pytorch_lightning\trainer\call.py", line 46, in _call_and_handle_interrupt
[rank0]: return trainer.strategy.launcher.launch(trainer_fn, *args, trainer=trainer, **kwargs)
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\pytorch_lightning\strategies\launchers\su
bp
rocess_script.py", line 105, in launch
[rank0]: return function(*args, **kwargs)
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\pytorch_lightning\trainer\trainer.py", line 575, in _fit_impl
[rank0]: self._run(model, ckpt_path=ckpt_path)
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\pytorch_lightning\trainer\trainer.py", line 982, in _run
[rank0]: results = self._run_stage()
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\pytorch_lightning\trainer\trainer.py", line 1026, in _run_stage
[rank0]: self.fit_loop.run()
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\pytorch_lightning\loops\fit_loop.py", line 216, in run
[rank0]: self.advance()
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\pytorch_lightning\loops\fit_loop.py", line 455, in advance
[rank0]: self.epoch_loop.run(self._data_fetcher)
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\pytorch_lightning\loops\training_epoch_loop.py", line 150, in run
[rank0]: self.advance(data_fetcher)
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\pytorch_lightning\loops\training_epoch_loop.py", line 322, in advance
[rank0]: batch_output = self.manual_optimization.run(kwargs)
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\pytorch_lightning\loops\optimization\manual.py", line 94, in run
[rank0]: self.advance(kwargs)
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\pytorch_lightning\loops\optimization\manual.py", line 114, in advance
[rank0]: training_step_output = call._call_strategy_hook(trainer, "training_step", *kwargs.values())
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\pytorch_lightning\trainer\call.py", line 323, in _call_strategy_hook
[rank0]: output = fn(*args, **kwargs)
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\pytorch_lightning\strategies\strategy.py", line 390, in training_step
[rank0]: return self._forward_redirection(self.model, self.lightning_module, "training_step", *args, **kwargs)
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\pytorch_lightning\strategies\strategy.py", line 641, in __call__
[rank0]: wrapper_output = wrapper_module(*args, **kwargs)
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\torch\nn\modules\module.py", line 1739, in _wrapped_call_impl
[rank0]: return self._call_impl(*args, **kwargs)
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\torch\nn\modules\module.py", line 1750, in _call_impl
[rank0]: return forward_call(*args, **kwargs)
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\torch\nn\parallel\distributed.py", line 1643, in forward
[rank0]: else self._run_ddp_forward(*inputs, **kwargs)
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\torch\nn\parallel\distributed.py", line 1459, in _run_ddp_forward
[rank0]: return self.module(*inputs, **kwargs) # type: ignore[index]
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\torch\nn\modules\module.py", line 1739, in _wrapped_call_impl
[rank0]: return self._call_impl(*args, **kwargs)
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\torch\nn\modules\module.py", line 1750, in _call_impl
[rank0]: return forward_call(*args, **kwargs)
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\pytorch_lightning\strategies\strategy.py", line 634, in wrapped_forward
[rank0]: out = method(*_args, **_kwargs)
[rank0]: File "F:\GPT-SoVITS\GPT-SoVITS\GPT_SoVITS\AR\models\t2s_lightning_module.py", line 39, in training_step
[rank0]: loss, acc = forward(
[rank0]: File "F:\GPT-SoVITS\GPT-SoVITS\GPT_SoVITS\AR\models\t2s_model.py", line 471, in forward_old
[rank0]: acc = self.ar_accuracy_metric(logits.detach(), targets).item()
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\torch\nn\modules\module.py", line 1739, in _wrapped_call_impl
[rank0]: return self._call_impl(*args, **kwargs)
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\torch\nn\modules\module.py", line 1750, in _call_impl
[rank0]: return forward_call(*args, **kwargs)
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\torchmetrics\metric.py", line 316, in forward
[rank0]: self._forward_cache = self._forward_reduce_state_update(*args, **kwargs)
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\torchmetrics\metric.py", line 385, in _forward_reduce_state_update
[rank0]: self.update(*args, **kwargs)
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\torchmetrics\metric.py", line 560, in wrapped_func
[rank0]: raise err
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\torchmetrics\metric.py", line 550, in wrapped_func
[rank0]: update(*args, **kwargs)
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\torchmetrics\classification\stat_scores.py", line 343, in update
[rank0]: tp, fp, tn, fn = _multiclass_stat_scores_update(
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\torchmetrics\functional\classification\stat_scores.py", line 398, in _multiclass_stat_scores_update
[rank0]: preds_oh = _refine_preds_oh(preds, preds_oh, target, top_k)
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\torchmetrics\functional\classification\stat_scores.py", line 364, in _refine_preds_oh
[rank0]: return torch.zeros_like(preds_oh, dtype=torch.int32).scatter_(-1, result.unsqueeze(1).unsqueeze(1), 1)
[rank0]: RuntimeError: Index tensor must have the same number of dimensions as self tensor
Epoch 0: 0%| | 0/16 [00:04<?, ?it/s]
2025年02月17日 23点02分
1
"F:\anaconda3\envs\GPTSoVits\python.exe" GPT_SoVITS/s1_train.py --config_file "F:\GPT-SoVITS\GPT-SoVITS\TEMP/tmp_s1.yaml"
Seed set to 1234
Using 16bit Automatic Mixed Precision (AMP)
GPU available: True (cuda), used: True
TPU available: False, using: 0 TPU cores
HPU available: False, using: 0 HPUs
<All keys matched successfully>
ckpt_path: None
Initializing distributed: GLOBAL_RANK: 0, MEMBER: 1/1
----------------------------------------------------------------------------------------------------
distributed_backend=gloo
All distributed processes registered. Starting with 1 processes
----------------------------------------------------------------------------------------------------
semantic_data_len: 16
phoneme_data_len: 16
item_name semantic_audio
0 vocal_1_無間道我和弟兄们雄心壮志-谁知道开张还不到半个月-每天平均被人扫荡1-3次-... 520 105 105 105 72 411 511 245 245 266 299 498...
1 vocal_1_無間道我和弟兄们雄心壮志-谁知道开张还不到半个月-每天平均被人扫荡1-3次-... 872 545 320 752 52 515 837 876 481 792 38 800 ...
2 vocal_1_無間道我和弟兄们雄心壮志-谁知道开张还不到半个月-每天平均被人扫荡1-3次-... 208 1005 382 760 89 684 470 743 837 588 110 98...
3 vocal_1_無間道我和弟兄们雄心壮志-谁知道开张还不到半个月-每天平均被人扫荡1-3次-... 520 105 280 486 280 280 53 32 748 515 320 134 ...
4 vocal_1_無間道我和弟兄们雄心壮志-谁知道开张还不到半个月-每天平均被人扫荡1-3次-... 54 318 1001 75 601 893 244 732 893 229 1000 20...
5 vocal_1_無間道我和弟兄们雄心壮志-谁知道开张还不到半个月-每天平均被人扫荡1-3次-... 913 14 1005 656 357 837 401 591 201 946 800 19...
6 vocal_1_無間道我和弟兄们雄心壮志-谁知道开张还不到半个月-每天平均被人扫荡1-3次-... 797 99 160 565 701 901 204 480 434 846 39 313 ...
7 vocal_1_無間道我和弟兄们雄心壮志-谁知道开张还不到半个月-每天平均被人扫荡1-3次-... 520 280 280 41 545 338 507 357 441 1001 679 50...
8 vocal_1_無間道我和弟兄们雄心壮志-谁知道开张还不到半个月-每天平均被人扫荡1-3次-... 520 29 200 434 658 480 159 309 862 293 341 115...
9 vocal_1_無間道我和弟兄们雄心壮志-谁知道开张还不到半个月-每天平均被人扫荡1-3次-... 913 411 411 23 90 545 910 45 4 499 354 918 491...
10 vocal_1_無間道我和弟兄们雄心壮志-谁知道开张还不到半个月-每天平均被人扫荡1-3次-... 913 90 215 90 594 191 506 908 987 751 498 607 ...
11 vocal_1_無間道我和弟兄们雄心壮志-谁知道开张还不到半个月-每天平均被人扫荡1-3次-... 837 507 1005 277 602 474 656 127 911 124 646 2...
12 vocal_1_無間道我和弟兄们雄心壮志-谁知道开张还不到半个月-每天平均被人扫荡1-3次-... 208 411 14 103 771 438 438 89 383 772 475 1003...
13 vocal_1_無間道我和弟兄们雄心壮志-谁知道开张还不到半个月-每天平均被人扫荡1-3次-... 520 105 105 105 271 280 536 271 505 609 947 15...
14 vocal_1_無間道我和弟兄们雄心壮志-谁知道开张还不到半个月-每天平均被人扫荡1-3次-... 520 271 574 685 539 145 623 90 290 366 817 307...
15 vocal_1_無間道我和弟兄们雄心壮志-谁知道开张还不到半个月-每天平均被人扫荡1-3次-... 520 105 280 280 280 280 875 1001 910 62 755 63...
dataset.__len__(): 96
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]
| Name | Type | Params | Mode
-------------------------------------------------------
0 | model | Text2SemanticDecoder | 77.6 M | train
-------------------------------------------------------
77.6 M Trainable params
0 Non-trainable params
77.6 M Total params
310.426 Total estimated model params size (MB)
257 Modules in train mode
0 Modules in eval mode
F:\anaconda3\envs\GPTSoVits\lib\site-packages\pytorch_lightning\loops\fit_loop.py:310: The number of training batches (16) is smaller than the logging interval Trainer(log_every_n_steps=50). Set a lower value for log_every_n_steps if you want to see logs for the training epoch.
Epoch 0: 0%| | 0/16 [00:00<?, ?it/s][rank0]: Traceback (most recent call last):
[rank0]: File "F:\GPT-SoVITS\GPT-SoVITS\GPT_SoVITS\s1_train.py", line 184, in <module>
[rank0]: main(args)
[rank0]: File "F:\GPT-SoVITS\GPT-SoVITS\GPT_SoVITS\s1_train.py", line 160, in main
[rank0]: trainer.fit(model, data_module, ckpt_path=ckpt_path)
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\pytorch_lightning\trainer\trainer.py", line 539, in fit
[rank0]: call._call_and_handle_interrupt(
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\pytorch_lightning\trainer\call.py", line 46, in _call_and_handle_interrupt
[rank0]: return trainer.strategy.launcher.launch(trainer_fn, *args, trainer=trainer, **kwargs)
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\pytorch_lightning\strategies\launchers\su
bp
rocess_script.py", line 105, in launch
[rank0]: return function(*args, **kwargs)
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\pytorch_lightning\trainer\trainer.py", line 575, in _fit_impl
[rank0]: self._run(model, ckpt_path=ckpt_path)
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\pytorch_lightning\trainer\trainer.py", line 982, in _run
[rank0]: results = self._run_stage()
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\pytorch_lightning\trainer\trainer.py", line 1026, in _run_stage
[rank0]: self.fit_loop.run()
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\pytorch_lightning\loops\fit_loop.py", line 216, in run
[rank0]: self.advance()
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\pytorch_lightning\loops\fit_loop.py", line 455, in advance
[rank0]: self.epoch_loop.run(self._data_fetcher)
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\pytorch_lightning\loops\training_epoch_loop.py", line 150, in run
[rank0]: self.advance(data_fetcher)
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\pytorch_lightning\loops\training_epoch_loop.py", line 322, in advance
[rank0]: batch_output = self.manual_optimization.run(kwargs)
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\pytorch_lightning\loops\optimization\manual.py", line 94, in run
[rank0]: self.advance(kwargs)
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\pytorch_lightning\loops\optimization\manual.py", line 114, in advance
[rank0]: training_step_output = call._call_strategy_hook(trainer, "training_step", *kwargs.values())
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\pytorch_lightning\trainer\call.py", line 323, in _call_strategy_hook
[rank0]: output = fn(*args, **kwargs)
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\pytorch_lightning\strategies\strategy.py", line 390, in training_step
[rank0]: return self._forward_redirection(self.model, self.lightning_module, "training_step", *args, **kwargs)
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\pytorch_lightning\strategies\strategy.py", line 641, in __call__
[rank0]: wrapper_output = wrapper_module(*args, **kwargs)
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\torch\nn\modules\module.py", line 1739, in _wrapped_call_impl
[rank0]: return self._call_impl(*args, **kwargs)
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\torch\nn\modules\module.py", line 1750, in _call_impl
[rank0]: return forward_call(*args, **kwargs)
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\torch\nn\parallel\distributed.py", line 1643, in forward
[rank0]: else self._run_ddp_forward(*inputs, **kwargs)
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\torch\nn\parallel\distributed.py", line 1459, in _run_ddp_forward
[rank0]: return self.module(*inputs, **kwargs) # type: ignore[index]
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\torch\nn\modules\module.py", line 1739, in _wrapped_call_impl
[rank0]: return self._call_impl(*args, **kwargs)
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\torch\nn\modules\module.py", line 1750, in _call_impl
[rank0]: return forward_call(*args, **kwargs)
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\pytorch_lightning\strategies\strategy.py", line 634, in wrapped_forward
[rank0]: out = method(*_args, **_kwargs)
[rank0]: File "F:\GPT-SoVITS\GPT-SoVITS\GPT_SoVITS\AR\models\t2s_lightning_module.py", line 39, in training_step
[rank0]: loss, acc = forward(
[rank0]: File "F:\GPT-SoVITS\GPT-SoVITS\GPT_SoVITS\AR\models\t2s_model.py", line 471, in forward_old
[rank0]: acc = self.ar_accuracy_metric(logits.detach(), targets).item()
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\torch\nn\modules\module.py", line 1739, in _wrapped_call_impl
[rank0]: return self._call_impl(*args, **kwargs)
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\torch\nn\modules\module.py", line 1750, in _call_impl
[rank0]: return forward_call(*args, **kwargs)
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\torchmetrics\metric.py", line 316, in forward
[rank0]: self._forward_cache = self._forward_reduce_state_update(*args, **kwargs)
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\torchmetrics\metric.py", line 385, in _forward_reduce_state_update
[rank0]: self.update(*args, **kwargs)
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\torchmetrics\metric.py", line 560, in wrapped_func
[rank0]: raise err
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\torchmetrics\metric.py", line 550, in wrapped_func
[rank0]: update(*args, **kwargs)
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\torchmetrics\classification\stat_scores.py", line 343, in update
[rank0]: tp, fp, tn, fn = _multiclass_stat_scores_update(
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\torchmetrics\functional\classification\stat_scores.py", line 398, in _multiclass_stat_scores_update
[rank0]: preds_oh = _refine_preds_oh(preds, preds_oh, target, top_k)
[rank0]: File "F:\anaconda3\envs\GPTSoVits\lib\site-packages\torchmetrics\functional\classification\stat_scores.py", line 364, in _refine_preds_oh
[rank0]: return torch.zeros_like(preds_oh, dtype=torch.int32).scatter_(-1, result.unsqueeze(1).unsqueeze(1), 1)
[rank0]: RuntimeError: Index tensor must have the same number of dimensions as self tensor
Epoch 0: 0%| | 0/16 [00:04<?, ?it/s]