level 2
n0 = 1.1; \[Alpha] = 0.5*10^-3; \[Theta] = \[Pi]/4;
n[y_] := n0 - \[Alpha]y; sm = 3*10^3;
equ = {D[n[y[s]]*y'[s], s] == -\[Alpha], D[n[y[s]]*z'[s], s] == 0,
y[0] == 0, y'[0] == Sin [\[Theta]], z[0] == 0,
z'[0] == Cos[\[Theta]]};
sol = NDSolve[equ, {z, y}, {s, 0, sm}]
ParametricPlot [{z[s] y[s]} /. sol[[1]],
{s, 0, sm}, AxesLabel \[RightArrow] {"Z", "Y"}]
Clear ["Global`*"]
2022年03月17日 09点03分
1
n[y_] := n0 - \[Alpha]y; sm = 3*10^3;
equ = {D[n[y[s]]*y'[s], s] == -\[Alpha], D[n[y[s]]*z'[s], s] == 0,
y[0] == 0, y'[0] == Sin [\[Theta]], z[0] == 0,
z'[0] == Cos[\[Theta]]};
sol = NDSolve[equ, {z, y}, {s, 0, sm}]
ParametricPlot [{z[s] y[s]} /. sol[[1]],
{s, 0, sm}, AxesLabel \[RightArrow] {"Z", "Y"}]
Clear ["Global`*"]
