level 2
窒息而死的我
楼主
ClearAll["Global`x"]
s = NDSolve[{\!\(
\*SubscriptBox[\(\[PartialD]\), \(t\)]\(e[x,
t]\)\) == (2.81*10^-5)*\!\(
\*SubscriptBox[\(\[PartialD]\), \(x, x\)]\(e[x, t]\)\) - 1.5*\!\(
\*SubscriptBox[\(\[PartialD]\), \(x\)]\(e[x, t]\)\)*\!\(
\*SubscriptBox[\(\[PartialD]\), \(x, x\)]\(v[x,
t]\)\) + (1.23*10^-8)*0.126*e[x, t],
\!\(
\*SubscriptBox[\(\[PartialD]\), \(t\)]\(p[x,
t]\)\) == (2.55*10^-5)*\!\(
\*SubscriptBox[\(\[PartialD]\), \(x, x\)]\(p[x, t]\)\) + 1.2*\!\(
\*SubscriptBox[\(\[PartialD]\), \(x\)]\(p[x, t]\)\)*\!\(
\*SubscriptBox[\(\[PartialD]\), \(x, x\)]\(v[x,
t]\)\) + (0.126*5.68*10^-18)*e[x, t] - (10^-6)*p[x, t]*n[x, t],
\!\(
\*SubscriptBox[\(\[PartialD]\), \(t\)]\(n[x,
t]\)\) == (2.05*10^-5)*\!\(
\*SubscriptBox[\(\[PartialD]\), \(x, x\)]\(n[x, t]\)\) - 1.3*\!\(
\*SubscriptBox[\(\[PartialD]\), \(x\)]\(n[x, t]\)\)*\!\(
\*SubscriptBox[\(\[PartialD]\), \(x, x\)]\(v[x,
t]\)\) + (0.126*1.23*10^-8)*n[x, t] - (10^-6)*p[x, t]*n[x, t],
\!\(
\*SubscriptBox[\(\[PartialD]\), \(x, x\)]\(v[x,
t]\)\) == (1.6*10^-9 )* (e[x, t] + p[x, t] + n[x, t]),
v[0, t] == 0, v[3, t] == 6*cos[200*t]}, {e, p, n, v}, {x, 0,
3}, {t, 0, 4}]
Plot3D[Evaluate[v[x, t] /. s], {x, 0, 3}, {t, 0, 4}]



2021年11月24日 11点11分
1
s = NDSolve[{\!\(
\*SubscriptBox[\(\[PartialD]\), \(t\)]\(e[x,
t]\)\) == (2.81*10^-5)*\!\(
\*SubscriptBox[\(\[PartialD]\), \(x, x\)]\(e[x, t]\)\) - 1.5*\!\(
\*SubscriptBox[\(\[PartialD]\), \(x\)]\(e[x, t]\)\)*\!\(
\*SubscriptBox[\(\[PartialD]\), \(x, x\)]\(v[x,
t]\)\) + (1.23*10^-8)*0.126*e[x, t],
\!\(
\*SubscriptBox[\(\[PartialD]\), \(t\)]\(p[x,
t]\)\) == (2.55*10^-5)*\!\(
\*SubscriptBox[\(\[PartialD]\), \(x, x\)]\(p[x, t]\)\) + 1.2*\!\(
\*SubscriptBox[\(\[PartialD]\), \(x\)]\(p[x, t]\)\)*\!\(
\*SubscriptBox[\(\[PartialD]\), \(x, x\)]\(v[x,
t]\)\) + (0.126*5.68*10^-18)*e[x, t] - (10^-6)*p[x, t]*n[x, t],
\!\(
\*SubscriptBox[\(\[PartialD]\), \(t\)]\(n[x,
t]\)\) == (2.05*10^-5)*\!\(
\*SubscriptBox[\(\[PartialD]\), \(x, x\)]\(n[x, t]\)\) - 1.3*\!\(
\*SubscriptBox[\(\[PartialD]\), \(x\)]\(n[x, t]\)\)*\!\(
\*SubscriptBox[\(\[PartialD]\), \(x, x\)]\(v[x,
t]\)\) + (0.126*1.23*10^-8)*n[x, t] - (10^-6)*p[x, t]*n[x, t],
\!\(
\*SubscriptBox[\(\[PartialD]\), \(x, x\)]\(v[x,
t]\)\) == (1.6*10^-9 )* (e[x, t] + p[x, t] + n[x, t]),
v[0, t] == 0, v[3, t] == 6*cos[200*t]}, {e, p, n, v}, {x, 0,
3}, {t, 0, 4}]
Plot3D[Evaluate[v[x, t] /. s], {x, 0, 3}, {t, 0, 4}]


