level 2
ckhan6859
楼主
式子里含有贝塞尔函数相关的项,除了h0和c都是常量,这两个量需要代入很多点得到cg~h0曲线,但是只能一个一个点输入才有具体数值,要怎么处理呢
cg = -((4 g h0 (x y
\!\(\*SuperscriptBox[\(BesselJ\),
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None]\)[-1 + Sqrt[1 + (4 x^2)/\[Gamma]^2], (2 y)/(
Sqrt[g h0] \[Gamma])] - x y
\!\(\*SuperscriptBox[\(BesselJ\),
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None]\)[1 + Sqrt[1 + (4 x^2)/\[Gamma]^2], (2 y)/(
Sqrt[g h0] \[Gamma])] + Sqrt[g h0] x \[Gamma]
\!\(\*SuperscriptBox[\(BesselJ\),
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None]\)[Sqrt[1 + (4 x^2)/\[Gamma]^2], (2 y)/(
Sqrt[g h0] \[Gamma])]))/(\[Gamma] Sqrt[(
4 x^2 + \[Gamma]^2)/\[Gamma]^2] (Sqrt[g h0]
y BesselJ[-2 + Sqrt[1 + (4 x^2)/\[Gamma]^2], (2 y)/(
Sqrt[g h0] \[Gamma])] +
2 g h0 \[Gamma] BesselJ[-1 + Sqrt[1 + (4 x^2)/\[Gamma]^2], (
2 y)/(Sqrt[g h0] \[Gamma])] -
2 g h0 \[Gamma] BesselJ[1 + Sqrt[1 + (4 x^2)/\[Gamma]^2], (2 y)/(
Sqrt[g h0] \[Gamma])] +
Sqrt[g h0]
y BesselJ[2 + Sqrt[1 + (4 x^2)/\[Gamma]^2], (2 y)/(
Sqrt[g h0] \[Gamma])] -
2 Sqrt[g h0]
y BesselJ[Sqrt[1 + (4 x^2)/\[Gamma]^2], (2 y)/(
Sqrt[g h0] \[Gamma])])))
x = {0.001091, 0.001084}
h0 = {10, 10.1}
cg
{-2.88815*10^6 (0.0000195856
\!\(\*SuperscriptBox[\(BesselJ\),
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None]\)[{24.5103, 24.3468}, {42.3482, 42.138}] +
9.24981*10^-7
\!\(\*SuperscriptBox[\(BesselJ\),
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None]\)[{25.5103, 25.3468}, {42.3482, 42.138}] -
0.0000195856
\!\(\*SuperscriptBox[\(BesselJ\),
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None]\)[{26.5103, 26.3468}, {42.3482,
42.138}]), -2.91197*10^6 (0.00001946
\!\(\*SuperscriptBox[\(BesselJ\),
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None]\)[{24.5103, 24.3468}, {42.3482, 42.138}] +
9.2363*10^-7
\!\(\*SuperscriptBox[\(BesselJ\),
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None]\)[{25.5103, 25.3468}, {42.3482, 42.138}] -
0.00001946
\!\(\*SuperscriptBox[\(BesselJ\),
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None]\)[{26.5103, 26.3468}, {42.3482, 42.138}])}

2021年07月03日 19点07分
1
cg = -((4 g h0 (x y
\!\(\*SuperscriptBox[\(BesselJ\),
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None]\)[-1 + Sqrt[1 + (4 x^2)/\[Gamma]^2], (2 y)/(
Sqrt[g h0] \[Gamma])] - x y
\!\(\*SuperscriptBox[\(BesselJ\),
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None]\)[1 + Sqrt[1 + (4 x^2)/\[Gamma]^2], (2 y)/(
Sqrt[g h0] \[Gamma])] + Sqrt[g h0] x \[Gamma]
\!\(\*SuperscriptBox[\(BesselJ\),
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None]\)[Sqrt[1 + (4 x^2)/\[Gamma]^2], (2 y)/(
Sqrt[g h0] \[Gamma])]))/(\[Gamma] Sqrt[(
4 x^2 + \[Gamma]^2)/\[Gamma]^2] (Sqrt[g h0]
y BesselJ[-2 + Sqrt[1 + (4 x^2)/\[Gamma]^2], (2 y)/(
Sqrt[g h0] \[Gamma])] +
2 g h0 \[Gamma] BesselJ[-1 + Sqrt[1 + (4 x^2)/\[Gamma]^2], (
2 y)/(Sqrt[g h0] \[Gamma])] -
2 g h0 \[Gamma] BesselJ[1 + Sqrt[1 + (4 x^2)/\[Gamma]^2], (2 y)/(
Sqrt[g h0] \[Gamma])] +
Sqrt[g h0]
y BesselJ[2 + Sqrt[1 + (4 x^2)/\[Gamma]^2], (2 y)/(
Sqrt[g h0] \[Gamma])] -
2 Sqrt[g h0]
y BesselJ[Sqrt[1 + (4 x^2)/\[Gamma]^2], (2 y)/(
Sqrt[g h0] \[Gamma])])))
x = {0.001091, 0.001084}
h0 = {10, 10.1}
cg
{-2.88815*10^6 (0.0000195856
\!\(\*SuperscriptBox[\(BesselJ\),
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None]\)[{24.5103, 24.3468}, {42.3482, 42.138}] +
9.24981*10^-7
\!\(\*SuperscriptBox[\(BesselJ\),
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None]\)[{25.5103, 25.3468}, {42.3482, 42.138}] -
0.0000195856
\!\(\*SuperscriptBox[\(BesselJ\),
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None]\)[{26.5103, 26.3468}, {42.3482,
42.138}]), -2.91197*10^6 (0.00001946
\!\(\*SuperscriptBox[\(BesselJ\),
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None]\)[{24.5103, 24.3468}, {42.3482, 42.138}] +
9.2363*10^-7
\!\(\*SuperscriptBox[\(BesselJ\),
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None]\)[{25.5103, 25.3468}, {42.3482, 42.138}] -
0.00001946
\!\(\*SuperscriptBox[\(BesselJ\),
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None]\)[{26.5103, 26.3468}, {42.3482, 42.138}])}
