请问一下,问什么我的结果不是最简?
mathematica吧
全部回复
仅看楼主
level 1
裴388 楼主
输入:
x = {5, 6, 7, 8, 9, 10};
Subscript[V, d] = -5;
Subscript[t, OX] = 4*10^-4;
Subscript[t, S] = 3.5*10^-4;Subscript[W, T] = 30*10^-4;
Subscript[D, T] = 3*10^-4;
Subscript[t, S] = 3.5*10^-4;
q = 1.602*10^-19;
Subscript[N, D] = 2*10^15;
Subscript[\[CurlyEpsilon], OX] = 3.9;
k = 500;
Subscript[\[CurlyEpsilon], S] = 11.9;
Subscript[T,
k] = \[Sqrt](0.0000154296
15384615388
` +
42.016806722689076` (3/10000)[0.00005000000000000002`] +
3.0512820512820515` (1/2500)[0.00005000000000000002`] +
0.5`[0.00005000000000000002`]^2);
Subscript[\[CapitalUpsilon],
k] = (0.0238` (1/2500)[0.00005000000000000002`] +
0.5`[0.00005000000000000002`]^2)/(0.0000154296
15384615388
` +
42.016806722689076` (3/10000)[0.00005000000000000002`] +
3.0512820512820515` (1/2500)[0.00005000000000000002`] +
0.5`[0.00005000000000000002`]^2);
f[x_] = (cosh[x/Subscript[T, k]]/(
Subscript[T, k]*sinh[Subscript[W, T]/Subscript[T, k]]))[
Subscript[V, d] + (
q*Subscript[\[CapitalUpsilon], k]*Subscript[N, D]*Subscript[T,
k]^2)/Subscript[\[CurlyEpsilon], S]] - (
q*Subscript[\[CapitalUpsilon], k]*Subscript[N, D]*Subscript[T,
k]^2)/Subscript[\[CurlyEpsilon], S]*
cosh[(Subscript[W, T] - x)/Subscript[T, k]]/(
Subscript[T, k]*sinh[Subscript[W, T]/Subscript[T, k]])
输出-(0.0000269244 (0.0238 (1/2500)[0.00005] +
0.5[0.00005]^2) cosh[{-(4997/(
1000 Sqrt[
0.0000154296 + 42.0168 (3/10000)[0.00005] +
3.05128 (1/2500)[0.00005] + 0.5[0.00005]^2])), -(5997/(
1000 Sqrt[
0.0000154296 + 42.0168 (3/10000)[0.00005] +
3.05128 (1/2500)[0.00005] + 0.5[0.00005]^2])), -(6997/(
1000 Sqrt[
0.0000154296 + 42.0168 (3/10000)[0.00005] +
3.05128 (1/2500)[0.00005] + 0.5[0.00005]^2])), -(7997/(
1000 Sqrt[
0.0000154296 + 42.0168 (3/10000)[0.00005] +
3.05128 (1/2500)[0.00005] + 0.5[0.00005]^2])), -(8997/(
1000 Sqrt[
0.0000154296 + 42.0168 (3/10000)[0.00005] +
3.05128 (1/2500)[0.00005] + 0.5[0.00005]^2])), -(9997/(
1000 Sqrt[
0.0000154296 + 42.0168 (3/10000)[0.00005] +
3.05128 (1/2500)[0.00005] + 0.5[0.00005]^2]))}])/(Sqrt[
0.0000154296 + 42.0168 (3/10000)[0.00005] +
3.05128 (1/2500)[0.00005] + 0.5[0.00005]^2]
sinh[3/(
1000 Sqrt[
0.0000154296 + 42.0168 (3/10000)[0.00005] +
3.05128 (1/2500)[0.00005] + 0.5[0.00005]^2])]) +
cosh[{5/Sqrt[
0.0000154296 + 42.0168 (3/10000)[0.00005] +
3.05128 (1/2500)[0.00005] + 0.5[0.00005]^2], 6/Sqrt[
0.0000154296 + 42.0168 (3/10000)[0.00005] +
3.05128 (1/2500)[0.00005] + 0.5[0.00005]^2], 7/Sqrt[
0.0000154296 + 42.0168 (3/10000)[0.00005] +
3.05128 (1/2500)[0.00005] + 0.5[0.00005]^2], 8/Sqrt[
0.0000154296 + 42.0168 (3/10000)[0.00005] +
3.05128 (1/2500)[0.00005] + 0.5[0.00005]^2], 9/Sqrt[
0.0000154296 + 42.0168 (3/10000)[0.00005] +
3.05128 (1/2500)[0.00005] + 0.5[0.00005]^2], 10/Sqrt[
0.0000154296 + 42.0168 (3/10000)[0.00005] +
3.05128 (1/2500)[0.00005] + 0.5[0.00005]^2]}]/(Sqrt[
0.0000154296 + 42.0168 (3/10000)[0.00005] +
3.05128 (1/2500)[0.00005] + 0.5[0.00005]^2]
sinh[3/(
1000 Sqrt[
0.0000154296 + 42.0168 (3/10000)[0.00005] +
3.05128 (1/2500)[0.00005] + 0.5[0.00005]^2])])[-5 +
0.0000269244 (0.0238 (1/2500)[0.00005] + 0.5[0.00005]^2)]
[泪]
2019年11月13日 09点11分 1
1