神乐和风 不知后来还好吗
为女人折磨自己划不来
关注数: 20 粉丝数: 155 发帖数: 35,313 关注贴吧数: 1
吧里人大多闲的无聊,给大家看一个民科关于费马大定理的解释 费马方程X^n+Y^n=Z^n整数解的增元求解法 庄 严 庄宏飞 (辽阳铁路器材厂 111000) 【 摘要】对费马方程x^n+y^n=z^n整数解关系的证明,多年来在数学界一直颇多争议。本文利用平面几何方法,全面分析了直角三角形边长a^2+b^2=c^2整数解的存在条件,提出对多元代数式应用增元求值。本文给出的直角三角型边长a^2+b^2=c^2整数解的“定a计算法则”;“增比计算法则”;“定差公式法则”;“a值奇偶数列法则”;是平方整数解的代数条件和实践方法;本文提出建立了一元代数式的绝对方幂式与绝对非方幂式概念;本文利用同方幂数增比性质,利用整数方幂数增项差公式性质,把费马方程x^n+y^n=z^n原本三元高次不定方程的整数解判定问题,巧妙地化为了一元定解方程问题。 关键词:增元求解法 绝对方幂式绝对非方幂式 相邻整数方幂数增项差公式 引言:1621年,法国数学家费马(Fermat)在读看古希腊数学家丢番图(Diophantna)著写的算术学一书时,针对书中提到的直角三角形三边整数关系,提出了方程x^n+y^n=z^n在n=2时有无穷多组整数解,在n>2时永远没有整数解的观点。并声称自己当时进行了绝妙的证明。这就是被后世人称为费马大定理的旷世难题。时至今日,此问题的解答仍繁难冗长,纷争不断,令人莫衷一是。 本文利用直角三角形、正方形的边长与面积的相互关系,建立了费马方程平方整数解新的直观简洁的理论与实践方法,本文利用同方幂数增比定理,对费马方程x^n+y^n=z^n在指数n>2时的整数解关系进行了分析论证,用代数方法再现了费马当年的绝妙证明。 定义1.费马方程 人们习惯上称x^n+y^n=z^n关系为费马方程,它的深层意义是指:在指数n值取定后,其x、y、z均为整数。 在直角三角形边长中,经常得到a、b、c均为整数关系,例如直角三角形 3 、4、 5 ,这时由勾股弦定理可以得到3^2+4^2=5^2,所以在方次数为2时,费马方程与勾股弦定理同阶。当指数大于2时,费马方程整数解之研究,从欧拉到狄里克莱,已经成为很大的一门数学分支. 定义2.增元求解法 在多元代数式的求值计算中引入原计算项元以外的未知数项元加入,使其构成等式关系并参与求值运算。我们把利用增加未知数项元来实现对多元代数式求值的方法,叫增元求解法。 利用增元求解法进行多元代数式求值,有时能把非常复杂的问题变得极其简单。 下面,我们将利用增元求解法来实现对直角三角形三边a^2+b^2=c^2整数解关系的求值。 一,直角三角形边长a^2+b^2=c^2整数解的“定a计算法则” 定理1.如a、b、c分别是直角三角形的三边,Q是增元项,且Q≥1,满足条件: a≥3 { b=(a^2-Q^2)÷2Q c= Q+b 则此时,a^2+b^2=c^2是整数解; 证:在正方形面积关系中,由边长为a得到面积为a^2,若(a^2-Q^2)÷2Q=b(其中Q为增元项,且b、Q是整数),则可把面积a^2分解为a^2=Q^2+Qb+Qb,把分解关系按下列关系重新组合后可得到图形: Q2 Qb 其缺口刚好是一个边长为b的正方形。补足缺口面积b^2后可得到一个边长 Qb 为Q+b的正方形,现取Q+b=c,根据直角三角形边长关系的勾股弦定理a^2+b^2=c^2条件可知,此时的a、b、c是直角三角形的三个整数边长。 故定理1得证 应用例子: 例1. 利用定a计算法则求直角三角形a边为15时的边长平方整数解? 解:取 应用例子:a为15,选增元项Q为1,根据定a计算法则得到: a= 15 { b=(a^- Q^2)÷2Q=(15^2-1^2)÷2 =112 c=Q+b=1+112=113 所以得到平方整数解15^2+112^2=113^2 再取a为15,选增元项Q为3,根据定a计算法则得到: a= 15 { b=(a^2-Q^2)÷2Q=(15^2-3^2)÷6=36 c=Q+b=3+36=39 所以得到平方整数解15^2+36^2=39^2 定a计算法则,当取a=3、4、5、6、7 … 时,通过Q的不同取值,将函盖全部平方整数解。 二,直角三角形边长a^2+b^2=c^2整数解“增比计算法则” 定理2.如a^2+b^2=c^2 是直角三角形边长的一组整数解,则有(an)^2+(bn)^2 =(cn)^2(其中n=1、2、3…)都是整数解。 证:由勾股弦定理,凡a^2+b^2=c^2是整数解必得到一个边长都为整数的直角三角形 a c ,根据平面线段等比放大的原理,三角形等比放大得到 2a 2c; b 2b 3a 3c;4a 4c;… 由a、b、c为整数条件可知,2a、2b、2c; 3b 4b 3a、3b、3c;4a、4b、4c… na、nb、nc都是整数。 故定理2得证 应用例子: 例2.证明303^2+404^2=505^2是整数解? 解;由直角三角形3 5 得到3^2+4^2=5^2是整数解,根据增比计 4 算法则,以直角三角形 3×101 5×101 关系为边长时,必有 4×101 303^2+404^2=505^2是整数解。 三,直角三角形边长a^2+b^2=c^2整数解“定差公式法则” 3a + 2c + n = a1 (这里n=b-a之差,n=1、2、3…) 定理3.若直角三角形a^2+^b2=c^2是满足b-a=n关系的整数解,那么,利用以上3a+2c+ n = a1公式连求得到的a1、a2、a3…ai 所组成的平方数组ai^2+bi^2=ci^2都是具有b-a=n之定差关系的整数解。 证:取n为1,由直角三角形三边3、4、5得到3^2+4^2=5^2,这里n=b-a=4-3=1,根据 3a + 2c + 1= a1定差公式法则有: a1=3×3+2×5+1=20 这时得到 20^2+21^2=29^2 继续利用公式计算得到: a2=3×20+2×29+1=119 这时得到 119^2+120^2=169^2 继续利用公式计算得到 a3=3×119+2×169+1=696 这时得到 696^2+697^2=985^2 … 故定差为1关系成立 现取n为7,我们有直角三角形21^2+28^2=35^2,这里n=28-21=7,根据 3a + 2c + 7 = a1定差公式法则有: a1=3×21+2×35+7=140 这时得到 140^2+147^2=203^2 继续利用公式计算得到: a2=3×140+2×203+7=833 这时得到 833^2+840^2=1183^2 继续利用公式计算得到: a3=3×833+2×1183+7=4872 这时得到 4872^2+4879^2=6895^2 … 故定差为7关系成立 再取n为129,我们有直角三角形387^2+516^2=645^2,这里n=516-387=129,根据 3a + 2c + 129= a1定差公式法则有: a1=3×387+2×645+129=2580 这时得到 2580^2+2709^2=3741^2 继续利用公式计算得到: a2=3×2580+2×3741+129=15351 这时得到 15351^2+15480^2=21801^2 继续利用公式计算得到: a3=3×15351+2×21801+129=89784 这时得到 89784^2+89913^2=127065^2 … 故定差为129关系成立 故定差n计算法则成立 故定理3得证 四,平方整数解a^2+^b2=c^2的a值奇偶数列法则: 定理4. 如a^2+^b2=c^2是直角三角形的三个整数边长,则必有如下a值的奇数列、偶数列关系成立; (一) 奇数列a: 若a表为2n+1型奇数(n=1、2、3 …), 则a为奇数列平方整数解的关系是: a=2n+1 { c=n^2+(n+1)^2 b=c-1 证:由本式条件分别取n=1、2、3 … 时得到: 3^2+4^2=5^2 5^2+12^2=13^2 7^2+24^2=25^2 9^2+40^2=41^2 11^2+60^2=61^2 13^2+84^2=85^2 … 故得到奇数列a关系成立 (二)偶数列a: 若a表为2n+2型偶数(n=1、2、3 …), 则a为偶数列平方整数解的关系是: a=2n+2 { c=1+(n+1)^2 b=c-2 证:由本式条件分别取n=1、2、3 … 时得到: 4^2+3^2=5^2 6^2+8^2=10^2 8^2+15^2=17^2 10^2+24^2=26^2 12^2+35^2=37^2 14^2+48^2=50^2 … 故得到偶数列a关系成立 故定理4关系成立 由此得到,在直角三角形a、b、c三边中: b-a之差可为1、2、3… a-b之差可为1、2、3… c-a之差可为1、2、3… c-b之差可为1、2、3… 定差平方整数解有无穷多种; 每种定差平方整数解有无穷多个。 以上,我们给出了平方整数解的代数条件和实践方法。我们同样能够用代数方法证明,费马方程x^n+y^n=z^n在指数n>2时没有整数解。证明如下: 我们首先证明,增比计算法则在任意方次幂时都成立。 定理5,若a,b,c都是大于0的不同整数,m是大于1的整数,如有a^m+b^m=c^m+d^m+e^m同方幂关系成立,则a,b,c,d,e增比后,同方幂关系仍成立。 证:在定理原式 a^m+b^m=c^m+d^m+e^m中,取增比为n,n>1, 得到 : (n a)^m+(nb)^m=(nc)^m+(nd)^m+(ne)^m 原式化为 : n^m(a^m+b^m)=n^m(c^m+d^m+e^m) 两边消掉 n^m后得到原式。 所以,同方幂数和差式之间存在增比计算法则,增比后仍是同方幂数。 故定理5得证 定理6,若a,b,c是不同整数且有a^m+b=c^m关系成立,其中b>1,b不是a,c的同方幂数,当a,b,c同比增大后,b仍然不是a,c的同方幂数。 证:取定理原式a^m+b=c^m 取增比为n,n>1,得到:(na)^m+n^mb=(nc)^m 原式化为: n^m(a^m+b)=n^mc^m 两边消掉n^m后得到原式。 由于b不能化为a,c的同方幂数,所以n^mb也不能化为a,c的同方幂数。 所以,同方幂数和差式间含有的不是同方幂数的数项在共同增比后,等式关系仍然成立。其中的同方幂数数项在增比后仍然是同方幂数,不是同方幂数的数项在增比后仍然是非同方幂数。 故定理6得证 一元代数式的绝对方幂与绝对非方幂性质 定义3,绝对某次方幂式 在含有一元未知数的代数式中,若未知数取值为大于0的全体整数时,代数式的值都是某次完全方幂数,我们称这时的代数式为绝对某次方幂式。例如:n^2+2n+1,n^2+4n+4, n^2+6n+9,……都是绝对2次方幂式;而n^3+3n^2+3n+1,n^3+6n^2+12n+8,……都是绝对3次方幂式。 一元绝对某次方幂式的一般形式为(n+b)^m(m>1,b为常数项)的展开项。 定义4,绝对非某次方幂式 在含有一元未知数的代数式中,若未知数取值为大于0的全体整数时,代数式的值都不是某次完全方幂数,我们称这时的代数式为绝对非某次方幂式。例如:n^2+1,n^2+2,n^2+2n,…… 都是绝对非2次方幂式;而n^3+1,n^3+3n^2+1,n^3+3n+1,3n^2+3n+1,n^3+6n^2+8……都是绝对非3次方幂式。 当一元代数式的项数很少时,我们很容易确定代数式是否绝对非某次方幂式,例如n^2+n是绝对非2次方幂式,n^7+n是绝对非7次方幂式,但当代数式的项数很多时,得到绝对非某次方幂式的条件将越来越苛刻。 一元绝对非某次方幂式的一般形式为:在(n+b)^m
国际大型线性对撞机缺钱,被迫缩水,只研究希格斯玻色子 科技日报11月13日报道,《自然》杂志官网日前报道称,鉴于资金有限和未发现新粒子,国际未来加速器委员会近日批准,削减原计划在日本建造的国际线性对撞机(ILC)的规模——能量从500千兆电子伏特(GeV)减半到250GeV,隧道的长度由33.5公里减至13公里。 为ILC研制的超导射频加速器腔,整个对撞机中将使用16000个 ILC被认为是大型强子对撞机(LHC)的补充,LHC是环形设计,其中质子撞击后会与碎片团相互碰撞。而在ILC内,电子和正电子将在成千上万个首尾相连的超导腔内加速后发生碰撞,因此,比LHC内的质子碰撞更清洁,也更精确。 如果规模缩减,缩小版本的ILC将不得不放弃一些研究,如洞悉在更高能量下才能产生的夸克等粒子的属性等,它将专注于研究2012年欧洲核子研究中心(CERN)的LHC发现的希格斯玻色子,也称“上帝粒子”。粒子物理学家认为,250GeV的能量仍会产生“令人信服的物理学案例”。 ILC的预算约为100亿美元,国际物理界曾希望日本承担其中的大部分,但瑞士洛桑联邦理工学院日籍物理学家田中达表示,鉴于这一项目所需费用太过高昂,日本政府望而却步,目前尚未提供任何资金;加上其他大型对撞机没有发现任何新粒子,因此今年7月,日本高能物理学家协会提议,将ILC的能量限制在250GeV。该协会认为,在这一能量范围内足以产生大量希格斯玻色子,通过测量它与其他已知粒子的相互作用,也可以获得新的物理学发现。这一提议得到了国际未来加速器委员会的支持。 不过,并非所有物理学家都赞成此举,CERN理论物理学家约翰·艾利斯认为,只有在1000GeV条件下运行,ILC才能提供希格斯玻色子“更完整的图像”,他承认的确需要控制成本,但将能量限制在250GeV,“是对科学的重大妥协。
1 下一页