塔哈萨 塔哈萨
关注数: 54 粉丝数: 114 发帖数: 16,258 关注贴吧数: 45
话说(x+1)(x^2+1)-4能因式分解吗? 我觉得可以,然后就用matlab算了一下...,好死不死给出以下结果: >>syms x y z >> [x,y,z]=solve('x+y+z=-1','x*y+y*z+x*z=1','x*y*z=-4') x = [ 1/6*(404+12*1137^(1/2))^(1/3)-4/3/(404+12*1137^(1/2))^(1/3)-2/3-1/72/(404+12*1137^(1/2))^(2/3)*(-48*(404+12*1137^(1/2))^(1/3)+2424+72*1137^(1/2)-24*(404+12*1137^(1/2))^(2/3)+24*i*(12*(404+12*1137^(1/2))^(2/3)+404*(404+12*1137^(1/2))^(1/3)+12*(404+12*1137^(1/2))^(1/3)*1137^(1/2)+61302+1818*1137^(1/2)+2*(404+12*1137^(1/2))^(4/3))^(1/2))] [ 1/6*(404+12*1137^(1/2))^(1/3)-4/3/(404+12*1137^(1/2))^(1/3)-2/3-1/72/(404+12*1137^(1/2))^(2/3)*(-48*(404+12*1137^(1/2))^(1/3)+2424+72*1137^(1/2)-24*(404+12*1137^(1/2))^(2/3)-24*i*(12*(404+12*1137^(1/2))^(2/3)+404*(404+12*1137^(1/2))^(1/3)+12*(404+12*1137^(1/2))^(1/3)*1137^(1/2)+61302+1818*1137^(1/2)+2*(404+12*1137^(1/2))^(4/3))^(1/2))] [ -1/12*(404+12*1137^(1/2))^(1/3)+2/3/(404+12*1137^(1/2))^(1/3)-2/3-1/2*i*3^(1/2)*(-1/6*(404+12*1137^(1/2))^(1/3)-4/3/(404+12*1137^(1/2))^(1/3))-1/144/(404+12*1137^(1/2))^(2/3)*(2424*i*3^(1/2)+72*i*3^(1/2)*1137^(1/2)+48*i*(404+12*1137^(1/2))^(1/3)*3^(1/2)+48*(404+12*1137^(1/2))^(1/3)-48*(404+12*1137^(1/2))^(2/3)-2424-72*1137^(1/2)+48*(-6*i*3^(1/2)*(404+12*1137^(1/2))^(2/3)+6*(404+12*1137^(1/2))^(2/3)+909*i*3^(1/2)*1137^(1/2)+30651*i*3^(1/2)+909*1137^(1/2)-2*(404+12*1137^(1/2))^(4/3)-404*(404+12*1137^(1/2))^(1/3)+30651-12*(404+12*1137^(1/2))^(1/3)*1137^(1/2))^(1/2))] [ -1/12*(404+12*1137^(1/2))^(1/3)+2/3/(404+12*1137^(1/2))^(1/3)-2/3-1/2*i*3^(1/2)*(-1/6*(404+12*1137^(1/2))^(1/3)-4/3/(404+12*1137^(1/2))^(1/3))-1/144/(404+12*1137^(1/2))^(2/3)*(2424*i*3^(1/2)+72*i*3^(1/2)*1137^(1/2)+48*i*(404+12*1137^(1/2))^(1/3)*3^(1/2)+48*(404+12*1137^(1/2))^(1/3)-48*(404+12*1137^(1/2))^(2/3)-2424-72*1137^(1/2)-48*(-6*i*3^(1/2)*(404+12*1137^(1/2))^(2/3)+6*(404+12*1137^(1/2))^(2/3)+909*i*3^(1/2)*1137^(1/2)+30651*i*3^(1/2)+909*1137^(1/2)-2*(404+12*1137^(1/2))^(4/3)-404*(404+12*1137^(1/2))^(1/3)+30651-12*(404+12*1137^(1/2))^(1/3)*1137^(1/2))^(1/2))] [ -1/12*(404+12*1137^(1/2))^(1/3)+2/3/(404+12*1137^(1/2))^(1/3)-2/3+1/2*i*3^(1/2)*(-1/6*(404+12*1137^(1/2))^(1/3)-4/3/(404+12*1137^(1/2))^(1/3))-1/144/(404+12*1137^(1/2))^(2/3)*(-2424*i*3^(1/2)-72*i*3^(1/2)*1137^(1/2)-48*i*(404+12*1137^(1/2))^(1/3)*3^(1/2)+48*(404+12*1137^(1/2))^(1/3)-48*(404+12*1137^(1/2))^(2/3)-2424-72*1137^(1/2)+48*(6*i*3^(1/2)*(404+12*1137^(1/2))^(2/3)+6*(404+12*1137^(1/2))^(2/3)-909*i*3^(1/2)*1137^(1/2)-30651*i*3^(1/2)+909*1137^(1/2)-2*(404+12*1137^(1/2))^(4/3)-404*(404+12*1137^(1/2))^(1/3)+30651-12*(404+12*1137^(1/2))^(1/3)*1137^(1/2))^(1/2))] [ -1/12*(404+12*1137^(1/2))^(1/3)+2/3/(404+12*1137^(1/2))^(1/3)-2/3+1/2*i*3^(1/2)*(-1/6*(404+12*1137^(1/2))^(1/3)-4/3/(404+12*1137^(1/2))^(1/3))-1/144/(404+12*1137^(1/2))^(2/3)*(-2424*i*3^(1/2)-72*i*3^(1/2)*1137^(1/2)-48*i*(404+12*1137^(1/2))^(1/3)*3^(1/2)+48*(404+12*1137^(1/2))^(1/3)-48*(404+12*1137^(1/2))^(2/3)-2424-72*1137^(1/2)-48*(6*i*3^(1/2)*(404+12*1137^(1/2))^(2/3)+6*(404+12*1137^(1/2))^(2/3)-909*i*3^(1/2)*1137^(1/2)-30651*i*3^(1/2)+909*1137^(1/2)-2*(404+12*1137^(1/2))^(4/3)-404*(404+12*1137^(1/2))^(1/3)+30651-12*(404+12*1137^(1/2))^(1/3)*1137^(1/2))^(1/2))] y = [ -1/6*(404+12*1137^(1/2))^(1/3)+4/3/(404+12*1137^(1/2))^(1/3)-1/3] [ -1/6*(404+12*1137^(1/2))^(1/3)+4/3/(404+12*1137^(1/2))^(1/3)-1/3] [ 1/12*(404+12*1137^(1/2))^(1/3)-2/3/(404+12*1137^(1/2))^(1/3)-1/3+1/2*i*3^(1/2)*(-1/6*(404+12*1137^(1/2))^(1/3)-4/3/(404+12*1137^(1/2))^(1/3))] [ 1/12*(404+12*1137^(1/2))^(1/3)-2/3/(404+12*1137^(1/2))^(1/3)-1/3+1/2*i*3^(1/2)*(-1/6*(404+12*1137^(1/2))^(1/3)-4/3/(404+12*1137^(1/2))^(1/3))] [ 1/12*(404+12*1137^(1/2))^(1/3)-2/3/(404+12*1137^(1/2))^(1/3)-1/3-1/2*i*3^(1/2)*(-1/6*(404+12*1137^(1/2))^(1/3)-4/3/(404+12*1137^(1/2))^(1/3))] [ 1/12*(404+12*1137^(1/2))^(1/3)-2/3/(404+12*1137^(1/2))^(1/3)-1/3-1/2*i*3^(1/2)*(-1/6*(404+12*1137^(1/2))^(1/3)-4/3/(404+12*1137^(1/2))^(1/3))] z = [ 1/72/(404+12*1137^(1/2))^(2/3)*(-48*(404+12*1137^(1/2))^(1/3)+2424+72*1137^(1/2)-24*(404+12*1137^(1/2))^(2/3)+24*i*(12*(404+12*1137^(1/2))^(2/3)+404*(404+12*1137^(1/2))^(1/3)+12*(404+12*1137^(1/2))^(1/3)*1137^(1/2)+61302+1818*1137^(1/2)+2*(404+12*1137^(1/2))^(4/3))^(1/2))] [ 1/72/(404+12*1137^(1/2))^(2/3)*(-48*(404+12*1137^(1/2))^(1/3)+2424+72*1137^(1/2)-24*(404+12*1137^(1/2))^(2/3)-24*i*(12*(404+12*1137^(1/2))^(2/3)+404*(404+12*1137^(1/2))^(1/3)+12*(404+12*1137^(1/2))^(1/3)*1137^(1/2)+61302+1818*1137^(1/2)+2*(404+12*1137^(1/2))^(4/3))^(1/2))] [ 1/144/(404+12*1137^(1/2))^(2/3)*(2424*i*3^(1/2)+72*i*3^(1/2)*1137^(1/2)+48*i*(404+12*1137^(1/2))^(1/3)*3^(1/2)+48*(404+12*1137^(1/2))^(1/3)-48*(404+12*1137^(1/2))^(2/3)-2424-72*1137^(1/2)+48*(-6*i*3^(1/2)*(404+12*1137^(1/2))^(2/3)+6*(404+12*1137^(1/2))^(2/3)+909*i*3^(1/2)*1137^(1/2)+30651*i*3^(1/2)+909*1137^(1/2)-2*(404+12*1137^(1/2))^(4/3)-404*(404+12*1137^(1/2))^(1/3)+30651-12*(404+12*1137^(1/2))^(1/3)*1137^(1/2))^(1/2))] [ 1/144/(404+12*1137^(1/2))^(2/3)*(2424*i*3^(1/2)+72*i*3^(1/2)*1137^(1/2)+48*i*(404+12*1137^(1/2))^(1/3)*3^(1/2)+48*(404+12*1137^(1/2))^(1/3)-48*(404+12*1137^(1/2))^(2/3)-2424-72*1137^(1/2)-48*(-6*i*3^(1/2)*(404+12*1137^(1/2))^(2/3)+6*(404+12*1137^(1/2))^(2/3)+909*i*3^(1/2)*1137^(1/2)+30651*i*3^(1/2)+909*1137^(1/2)-2*(404+12*1137^(1/2))^(4/3)-404*(404+12*1137^(1/2))^(1/3)+30651-12*(404+12*1137^(1/2))^(1/3)*1137^(1/2))^(1/2))] [ 1/144/(404+12*1137^(1/2))^(2/3)*(-2424*i*3^(1/2)-72*i*3^(1/2)*1137^(1/2)-48*i*(404+12*1137^(1/2))^(1/3)*3^(1/2)+48*(404+12*1137^(1/2))^(1/3)-48*(404+12*1137^(1/2))^(2/3)-2424-72*1137^(1/2)+48*(6*i*3^(1/2)*(404+12*1137^(1/2))^(2/3)+6*(404+12*1137^(1/2))^(2/3)-909*i*3^(1/2)*1137^(1/2)-30651*i*3^(1/2)+909*1137^(1/2)-2*(404+12*1137^(1/2))^(4/3)-404*(404+12*1137^(1/2))^(1/3)+30651-12*(404+12*1137^(1/2))^(1/3)*1137^(1/2))^(1/2))] [ 1/144/(404+12*1137^(1/2))^(2/3)*(-2424*i*3^(1/2)-72*i*3^(1/2)*1137^(1/2)-48*i*(404+12*1137^(1/2))^(1/3)*3^(1/2)+48*(404+12*1137^(1/2))^(1/3)-48*(404+12*1137^(1/2))^(2/3)-2424-72*1137^(1/2)-48*(6*i*3^(1/2)*(404+12*1137^(1/2))^(2/3)+6*(404+12*1137^(1/2))^(2/3)-909*i*3^(1/2)*1137^(1/2)-30651*i*3^(1/2)+909*1137^(1/2)-2*(404+12*1137^(1/2))^(4/3)-404*(404+12*1137^(1/2))^(1/3)+30651-12*(404+12*1137^(1/2))^(1/3)*1137^(1/2))^(1/2))] >> 求大神给分析一下呗?
给大家推荐一本书《第56号教室的奇迹》 这本书看起来还是不错的。虽然说我们的教育体系和欧美有很大差距,但是,教育思想方面有可取之处,或者说,在教育思想上很多都是一样的额,我们的先人们就有这样的思想,不过在表现形式上拘泥于当时的体制罢了。今天听完一个新来的研究生读这本书的感想,她说,她研一的时候,导师就让他们读过这本书,不过是当时是应付,草草了事。但是现在作为一线教师的话,她有更深的感触在看这本书。她所学的知识中包括很多的教育理论,按她的话说,现在要抽一个她学过的教育理论,哪一段都能背出来,但是问题在于,理论与实践或者现实差距太远,要如何将将理论付诸于实践。平时我们都说理论是死板的,甚至有些人说理论的东西太没用,但是看这本书的时候,这本书在前面就说了一个科尔伯格道德发展六阶段的理论,这个理论相信很多师范类的学生都知道的,但是如果按照这个理论来划分,其实很多时候,我们都在做的是第一阶段,好一点的会做到第二阶段,社会的评论就很好了。而实际上,最好的最理想的是第六阶段。目前见到的培养的比较好的,也仅仅处在四阶段,好吧,小塔的见识比较浅薄,如果有案例欢迎补充。实际上,很多新老师或者我们自己在小学刚开始教学时候,都会有师父或者同行或者长辈前人提醒你一点,新进入一个班级不能太笑,要板着脸,否则学生就会对你蹬鼻子上脸。我在实习阶段就深受其苦:真正的数学老师一走,他们班就乱的不行,作业都讲不下去,最后还要灰头土脸的请他回来来镇住。实际上,教法上大家都会,小学很多就是生管问题了。反正我是没有什么其他的法子。这本书看起来不错,有些方案可以考虑着试一试,比如说有个案例,讲两位数加法,就说的时候让学生来出选择题的答案。学生自然会知道正确答案,但是在自己出题的过程中,却可以设置一些陷阱之类的,下次在看到自己出过的陷阱,自然就会有意识地避开了。这本书给我的感触还有一点就是,对群体的惩罚的态度。之前我是认为,对群体的惩罚很有必要。然而实际上,看完这本书后,我彻底摒弃了这观点。因为错在某一个人,因为这个人的错而连累其他同学,那么其他同学对你有意见的同时,也会对犯错的人 产生一定的偏见,这对于他本人或者犯错的同学来说都是负面的消极的影响。所以,我彻底的放弃了对于群体的处罚。就算是起立后依旧有同学站不好,提醒过依旧我行我素的,那我只好先说同学们好(同学们再见),然后课后再找这个同学单独聊天,谈话,等。就打这些吧,欢迎吐槽。
首页 1 2 3 下一页