2142 CF小杨桃
关注数: 79 粉丝数: 73 发帖数: 11,009 关注贴吧数: 105
三角函数化简 有一个应该是对变量等价(或轮换对称)的三角函数表达式,想把他写成轮换对称的形式,但是用Simplify和FullSimplify无法直接得出对称形式,想请问应该如何操作(或者说检验下是不是对称的。。) (-Sqrt[(f^2/(a3^2 + f^2))] Cos[\[Alpha]2] Cos[\[Delta]2]^3 Cot[\[Delta]1] Sin[\[Alpha]1] \ Sin[\[Alpha]2]^2 + Sqrt[f^2/(a2^2 + f^2)] Cos[\[Alpha]3] Cos[\[Delta]2]^2 Cos[\[Delta]3] Cot[\[Delta]1] \ Sin[\[Alpha]1] Sin[\[Alpha]2]^2 + Sqrt[f^2/(a3^2 + f^2)] Cos[\[Alpha]1] Cos[\[Delta]2]^3 Cot[\[Delta]1] Sin[\[Alpha]2]^3 - Sqrt[f^2/(a1^2 + f^2)] Cos[\[Alpha]3] Cos[\[Delta]2]^3 Cos[\[Delta]3] Csc[\[Delta]1] \ Sin[\[Alpha]2]^3 - Sqrt[f^2/(a2^2 + f^2)] Cos[\[Alpha]1] Cos[\[Delta]2]^2 Cos[\[Delta]3] Cot[\[Delta]1] \ Sin[\[Alpha]2]^2 Sin[\[Alpha]3] + Sqrt[f^2/(a1^2 + f^2)] Cos[\[Alpha]2] Cos[\[Delta]2]^3 Cos[\[Delta]3] Csc[\[Delta]1] \ Sin[\[Alpha]2]^2 Sin[\[Alpha]3] + 2 Sqrt[f^2/(a3^2 + f^2)] Cos[\[Alpha]2] Cos[\[Delta]2]^2 Cot[\[Delta]1]^2 \ Sin[\[Alpha]1]^2 Sin[\[Alpha]2] Sin[\[Delta]2] - 2 Sqrt[f^2/(a2^2 + f^2)] Cos[\[Alpha]3] Cos[\[Delta]2] Cos[\[Delta]3] Cot[\[Delta]1]^2 \ Sin[\[Alpha]1]^2 Sin[\[Alpha]2] Sin[\[Delta]2] - 2 Sqrt[f^2/(a3^2 + f^2)] Cos[\[Alpha]1] Cos[\[Delta]2]^2 Cot[\[Delta]1]^2 Sin[\[Alpha]1] \ Sin[\[Alpha]2]^2 Sin[\[Delta]2] + 2 Sqrt[f^2/(a1^2 + f^2)] Cos[\[Alpha]3] Cos[\[Delta]2]^2 Cos[\[Delta]3] Cot[\[Delta]1] \ Csc[\[Delta]1] Sin[\[Alpha]1] Sin[\[Alpha]2]^2 Sin[\[Delta]2] + 2 Sqrt[f^2/(a2^2 + f^2)] Cos[\[Alpha]1] Cos[\[Delta]2] Cos[\[Delta]3] Cot[\[Delta]1]^2 \ Sin[\[Alpha]1] Sin[\[Alpha]2] Sin[\[Alpha]3] Sin[\[Delta]2] - 2 Sqrt[f^2/(a1^2 + f^2)] Cos[\[Alpha]2] Cos[\[Delta]2]^2 Cos[\[Delta]3] Cot[\[Delta]1] \ Csc[\[Delta]1] Sin[\[Alpha]1] Sin[\[Alpha]2] Sin[\[Alpha]3] Sin[\ \[Delta]2] - Sqrt[f^2/(a3^2 + f^2)] Cos[\[Alpha]2] Cos[\[Delta]2] Cot[\[Delta]1]^3 Sin[\[Alpha]1]^3 \ Sin[\[Delta]2]^2 + Sqrt[f^2/(a2^2 + f^2)] Cos[\[Alpha]3] Cos[\[Delta]3] Cot[\[Delta]1]^3 Sin[\[Alpha]1]^3 \ Sin[\[Delta]2]^2 + Sqrt[f^2/(a3^2 + f^2)] Cos[\[Alpha]1] Cos[\[Delta]2] Cot[\[Delta]1]^3 Sin[\[Alpha]1]^2 \ Sin[\[Alpha]2] Sin[\[Delta]2]^2 - Sqrt[f^2/(a1^2 + f^2)] Cos[\[Alpha]3] Cos[\[Delta]2] Cos[\[Delta]3] Cot[\[Delta]1]^2 \ Csc[\[Delta]1] Sin[\[Alpha]1]^2 Sin[\[Alpha]2] Sin[\[Delta]2]^2 - Sqrt[f^2/(a2^2 + f^2)] Cos[\[Alpha]1] Cos[\[Delta]3] Cot[\[Delta]1]^3 Sin[\[Alpha]1]^2 \ Sin[\[Alpha]3] Sin[\[Delta]2]^2 + Sqrt[f^2/(a1^2 + f^2)] Cos[\[Alpha]2] Cos[\[Delta]2] Cos[\[Delta]3] Cot[\[Delta]1]^2 \ Csc[\[Delta]1] Sin[\[Alpha]1]^2 Sin[\[Alpha]3] \ Sin[\[Delta]2]^2)/((Cos[\[Delta]2] Sin[\[Alpha]2] - Cot[\[Delta]1] Sin[\[Alpha]1] Sin[\[Delta]2])^2 (-Cos[\[Alpha]3] \ Cos[\[Delta]2] Cos[\[Delta]3] Sin[\[Alpha]2] + Cos[\[Alpha]2] Cos[\[Delta]2] Cos[\[Delta]3] Sin[\[Alpha]3] + Cos[\[Alpha]3] Cos[\[Delta]3] Cot[\[Delta]1] Sin[\[Alpha]1] Sin[\ \[Delta]2] - Cos[\[Alpha]1] Cos[\[Delta]3] Cot[\[Delta]1] Sin[\[Alpha]3] Sin[\ \[Delta]2] - Cos[\[Alpha]2] Cos[\[Delta]2] Cot[\[Delta]1] Sin[\[Alpha]1] Sin[\ \[Delta]3] + Cos[\[Alpha]1] Cos[\[Delta]2] Cot[\[Delta]1] Sin[\[Alpha]2] Sin[\ \[Delta]3]))
1 下一页