草红样
草红样
关注数: 107
粉丝数: 59
发帖数: 2,270
关注贴吧数: 59
复合根式的化简 对于根式处理,Maple有专门的函数radnormal和rationalize。Mathematica中对于简单的可以用Simplify/FullSimplify,复杂点就不行了,例如: Sqrt[10 - 6 Sqrt[2] + 5 Sqrt[3] - 4 Sqrt[6]], 一种方法是用待定系数法, 10 - 6 Sqrt[2] + 5 Sqrt[3] - 4 Sqrt[6] == (a Sqrt[2] + b Sqrt[3] + c Sqrt[6] + d)^2 10 - 6 Sqrt[2] + 5 Sqrt[3] - 4 Sqrt[6] == 2 a^2 + 3 b^2 + 6 c^2 + d^2 + Sqrt[2] (6 b c + 2 a d) + Sqrt[3] (4 a c + 2 b d) + Sqrt[6] (2 a b + 2 c d) Solve[{10 == 2 a^2 + 3 b^2 + 6 c^2 + d^2, -6 == 6 b c + 2 a d, 5 == 4 a c + 2 b d, -4 == 2 a b + 2 c d}, {a, b, c, d}, Rationals] 觉得可以用SolveAlways做,但是没搞出来,
Polygon中VertexColors的问题 f[{{x1_, y1_}, {x2_, y2_}, {x3_, y3_}}] := {{{x1, y1}, {(x1 + x2)/2, (y1 + y2)/2}, {(x1 + x3)/2, (y1 + y3)/ 2}}, {{x2, y2}, {(x2 + x3)/2, (y2 + y3)/2}, {(x2 + x1)/2, (y2 + y1)/ 2}}, {{x3, y3}, {(x3 + x1)/2, (y3 + y1)/2}, {(x3 + x2)/2, (y3 + y2)/2}}}; d = Nest[Join @@ f /@ # &, N@{{{0, 0}, {1, 0}, {.5, .8}}}, 3]; Graphics[Polygon[d, VertexColors -> {{Red, Green, Blue}}]]这样只能为一个小三角着色,我想要的是整体这样的,该怎么写呢? 注意,不是下图这样的效果,是整体的着色就像那个小三角的一样
Compile的奇怪问题 Mean@Table[ N[Length@NestWhileList[# + Random[] &, 0.0, # < 1 &] - 1], {1000}] Compile[{}, Mean@Table[ N[Length@NestWhileList[# + Random[] &, 0.0, # < 1 &] - 1], {1000}] ][] Compile后结果错误了,原因不明
x^2-3y^2=2z^2是否存在正整数解? 这个是不存在的,Mathematica能否判断呢,下面的测试却没得到结果,是语法问题吗 Exists[{x, y, z}, x > 0 && y > 0 && z > 0 && x^2 - 3 y^2 == 2 z^2] Resolve[%, Integers] Exists[{x, y, z}, x \[Element] Integers && y \[Element] Integers && z \[Element] Integers, x > 0 && y > 0 && z > 0 && x^2 - 3 y^2 == 2 z^2] Resolve[%]
求1+1/2+1/3+...+1/n>20的最小值 初学haskell,貌似要用takeWhile,不清楚怎么写,求指点
把一段代码重构 tree[set_, m_] := Module[{\[Theta], mz, my, temp, k, i, p1, p2, a, b, c, d, e, f}, \[Theta] = Pi/6; mz = {{Cos[\[Theta]], -Sin[\[Theta]]}, {Sin[\[Theta]], Cos[\[Theta]]}}; my = {{Cos[-\[Theta]], -Sin[-\[Theta]]}, {Sin[-\[Theta]], Cos[-\[Theta]]}}; temp = set; p1 = {};(*存放树干*) p2 = {};(*存放树枝*) For[k = 1, k <= m, k++, p2 = {}; For[i = 1, i <= Length[temp], i++, a = temp[[i, 2]]; b = temp[[i, 1]]; c = 1/3*a + 2/3*b; d = c + mz.(a - b)*(1/3); e = c + my.(a - b)*(1/3); AppendTo[p1, {Brown, Thickness[0.035/k], Line[{b, c}]}]; AppendTo[p2, {c, a}]; AppendTo[p2, {c, d}]; AppendTo[p2, {c, e}]; ]; temp = p2; ]; Show[Graphics[{p1, {RGBColor[0.1, 0.42, 0.17], Line[p2]}}, Axes -> 1, PlotRange -> {{-0.2, 0.2}, {-0.2, 1.}}]]];tree[{{{0., 0.}, {0., 1.}}}, 7] 在仿真论坛看到的,有点意思,但写法明显不是Mathematica的风格,大家看谁能改成用Table、Map等来做
1
下一页