wzhq77😇 wzhq777
贡献我的知道,寻求你的知道。
关注数: 109 粉丝数: 2,398 发帖数: 8,254 关注贴吧数: 22
唯一的优质答案 答题两年半了,只有一个优质答案。 理科真不容易得到”优质“称号! http://tieba.baidu.com/mo/q/checkurl?url=http%3A%2F%2Fzhidao.baidu.com%2Fquestion%2F551700249.html&urlrefer=0176c8682d7011ffa925b428c24036e0 怎样的等腰三角形满足条件:画一条直线将之分成两个等腰三角形?首先,这条直线必须经过顶点,不然得到的两个图形中一个是三角形,另一个是四边形,那么经过等腰三角形的顶点,又可以将等腰三角形分成两个等腰三角形,分两种情况进行:⑴过顶角顶点的直线:如图一:已知AB=AC,①AD=BD,AD=CD,这时ΔABD≌ΔACD(SSS),∴∠ADB=∠ADC,又∠ADC+∠ADB=180°,∴∠ADB=90°,又AD=BD,∴ΔABD是等腰直角三角形,∴∠B=∠C=45°,∴∠BAC=90°,即ΔABC是等腰直角三角形。②AD=BD,AD=AC,∵∠ADC=∠C>∠B,与∠B=∠C矛盾。③AD=BD,AC=CD,∵∠CDA=∠CAD=∠DAB+∠DBA=2∠B=2∠C,∴在ΔACD中,5∠C=180°,得∠C=36°,∴∠BAC=108°。以上由于其它情况的对称关系,已经考虑了所有的可能性。⑵过底角顶点的直线:如图二,AB=AC,首先,AB>AD,ΔABD中只考虑AD=BD,其次∠DBC<∠ABC=∠C,∴BD>CD,不必考虑BD=CD。分以下两种情况:①AD=BD,BD=BC,∠BDC是ΔABD的外角,∴∠BDC=∠DAB+∠DBA=2∠A,∴∠C=∠BDC=2∠A,∴∠ABC=2∠A,在ΔABC中:5∠A=180°,∠A=36°。②AD=BD,BC=CD,这时∠BDC=2∠A,∴∠DBC=∠BDC=2∠A,∠C=180°-4∠A,在ΔBC中,∠B=∠C=180°-4∠A,根据三角形内角和为180°得方程:360°-8∠A+∠A=180°,7∠A=180°,∠A=(180/7)°,通过以上的分析总结出:一条直线分为两个等腰三角形的等腰三角形存在四种情况,它们的顶角分别为:90°、108°、36°、(180/7)°。从探究过程得到教训:科学的探索是无止境的,只要用心观察,认真推理,我们可能得到尚未让人知道的自然规律。
首页 1 2 下一页